MIDTERM 2 (TATARU) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1) (a) Eigenvalues: $\lambda=0,4,-1$, Characteristic poly: $p(\lambda)=\lambda(\lambda-4)(\lambda+1)$
(b)

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{l}
9 \\
6 \\
5
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]\right\}
$$

(c)

$$
P=\left[\begin{array}{ccc}
1 & 9 & 1 \\
-2 & 6 & -1 \\
1 & 5 & 0
\end{array}\right], D=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Then you can indeed check that $A=P D P^{-1}$.
(2) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-80 \\ 50\end{array}\right]$
(3) Apply Gram-Schmidt to get $\mathcal{B}=\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \mathbf{w}_{\mathbf{3}}\right\}$ with:

$$
\mathbf{w}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
0
\end{array}\right], \mathbf{w}_{\mathbf{2}}=\left[\begin{array}{c}
16 \\
-4 \\
-4 \\
9
\end{array}\right], \mathbf{w}_{\mathbf{3}}=\left[\begin{array}{c}
-24 \\
-35 \\
47 \\
48
\end{array}\right]
$$

(4)

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & -3 & 2
\end{array}\right]
$$

(5) (a) TRUE

Assume $A \mathbf{v}=\lambda \mathbf{v}$ for some vector $\mathbf{v} \neq 0$. Then:

$$
A^{2} \mathbf{v}=A(A \mathbf{v})=A(\lambda \mathbf{v})=\lambda A \mathbf{v}=\lambda \lambda \mathbf{v}=\lambda^{2} \mathbf{v}
$$

However, we also have $A^{2}=A$, so $A^{2} \mathbf{v}=A \mathbf{v}=\lambda \mathbf{v}$.
Hence, we get $\lambda^{2} \mathbf{v}=\lambda \mathbf{v}$, so $\left(\lambda^{2}-\lambda\right) \mathbf{v}=\mathbf{0}$.
But since $\mathbf{v} \neq \mathbf{0}$, we get $\lambda^{2}-\lambda=0$, so $\lambda(\lambda-1)=0$, hence $\lambda=0,1$
(b) Ignore
(c) $\operatorname{FALSE}\left(A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right.$ is not diagonalizable)
(d) TRUE

This is slightly tricky!
First of all, since $A^{T} A=I, A$ is orthogonal.
But since A is SQUARE, this means that A is invertible, and $A^{-1}=A^{T}$.
However, we know that $A A^{-1}=I$, so $A A^{T}=I$.
But $A=\left(A^{T}\right)^{T}$, so $A^{T}\left(A^{T}\right)^{T}=I$.
But this just says that A^{T} is orthogonal as well! Hence the columns of A^{T} are orthonormal.

But the columns of A^{T} are the rows of A, so the rows of A are orthonormal, hence orthogonal!

