MIDTERM 2 (RIBET) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1) Notice that the matrix is already in row-echelon form!
(a) Basis for $\operatorname{Row}(\mathrm{A})$:

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
2 \\
8 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
6 \\
-1 \\
2 \\
-3
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
-1 \\
-3 \\
-10
\end{array}\right]\right\}
$$

(b) Basis for $\operatorname{Col}(\mathrm{A})$:

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
8 \\
6 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
0
\end{array}\right]\right\}
$$

(c) Basis for $\operatorname{Nul(A)}$:

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
8 \\
-5 \\
-18 \\
6 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
-7 \\
60 \\
0 \\
6
\end{array}\right]\right\}
$$

Note: There are many ways to do this, I just row-reduced A further until I got the reduced row-echelon form of A, then I solved for \mathbf{x}, and I multiplied the resulting vectors by 6 in order to get rid of the fractions!
(2) The eigenvalues are $\lambda=4,2$

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

YES (A is 3×3 and you just found 3 linearly independent eigenvectors).
(3) 2, Apply the Gram-Schmidt process to $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ to get:

$$
\mathbf{w}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-1 \\
3 \\
-2
\end{array}\right], \mathbf{w}_{\mathbf{2}}=\left[\begin{array}{c}
0 \\
10 \\
-2 \\
-8
\end{array}\right]
$$

And $\mathcal{B}=\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right\}$ is an orthogonal basis for W.
(4) -125
(5) Suppose \mathbf{y} is in $\operatorname{Col}(A)$.

By definition of $\operatorname{Col}(A)$, this means that there is an x such that $A \mathrm{x}=\mathbf{y}$.
But then:

$$
A \mathbf{y}=A(A \mathbf{x})=A^{2} \mathbf{x}=A \mathbf{x}=y
$$

(where in the middle step, we used the fact that $A^{2}=A$)
If $\operatorname{Nul}(A)=\{\mathbf{0}\}$, then A is invertible (since A is square).
Then multiply both sides of $A^{2}=A$ by A^{-1} to get $A=I$.

