MIDTERM 2 (BERGMAN) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1) (a) $\lambda=-5,0,1$
(b)

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
-5 \\
-4 \\
8
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]\right\}
$$

Note: Any multiple of those vectors works as well!
(c)

$$
P=\left[\begin{array}{ccc}
-5 & 0 & 1 \\
-4 & 2 & 2 \\
8 & 1 & 2
\end{array}\right]
$$

Note: The order doesn't matter, as long as you match the correct eigenvector with the corresponding eigenvalue!
(d)

$$
D=\left[\begin{array}{ccc}
-5 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note: The formula you usually know is $A=P D P^{-1}$, but this implies $D=$ $P^{-1} A P$.
(2) (a) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \mathrm{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ (all that this says is find a nonzero matrix with nonzero nullspace)
(c) Any positive multiple of the standard inner product works!

$$
\left\langle\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right\rangle=2\left(x_{1} y_{1}+x_{2} y_{2}\right)
$$

(d) $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. If you want a fancier example, try $A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$.

CAREFUL: The columns of A have to be orthoNORMAL.
(e) $V=\mathbb{R}^{2}$, for S just choose a set which has 'too' many elements (at least two of them being linearly independent), such as:

$$
S=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}
$$

(f)

$$
\frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right]
$$

(3) This problem is a bit silly if you think about it!

By definition of 'consistent', the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution $\mathbf{x}_{\mathbf{b}}$. Similarly the equation $A \mathbf{x}=\mathbf{c}$ also has a solution $\mathbf{x}_{\mathbf{c}}$.

In order for $A \mathbf{x}=\mathbf{b}+\mathbf{c}$ to be consistent, it has to have at least one solution. What could that solution be? Try $\tilde{\mathbf{x}}=\mathbf{x}_{\mathbf{b}}+\mathbf{x}_{\mathbf{c}}$. Then:

$$
A \tilde{\mathbf{x}}=A\left(\mathbf{x}_{\mathbf{b}}+\mathbf{x}_{\mathbf{c}}\right)=A \mathbf{x}_{\mathbf{b}}+A \mathbf{x}_{\mathbf{c}}=\mathbf{b}+\mathbf{c}
$$

Hence $\tilde{\mathbf{x}}$ solves $A \mathbf{x}=\mathbf{b}+\mathbf{c}$, hence this equation has at least one solution, hence it is consistent!
(4) $\hat{x}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
(5) Ignore!

