MIDTERM 1 (VOJTA) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1) (a) $\left[\begin{array}{l}1 \\ 5\end{array}\right]$
(b) $\left[\begin{array}{l}2 \\ 3\end{array}\right]$
(calculate A, A^{2}, A^{3} and notice the pattern! In particular $A^{n}=I$ if n is even)
(c) Undefined (dimensions don't agree)
(d) $\left[\begin{array}{cc}-23 & -2 \\ 3 & 9\end{array}\right]$
(2)

$$
\left[\begin{array}{l}
x \\
y \\
z \\
u \\
v
\end{array}\right]=\left[\begin{array}{c}
3 \\
-\frac{1}{2} \\
0 \\
\frac{1}{2} \\
2
\end{array}\right]+z\left[\begin{array}{c}
\frac{7}{2} \\
-\frac{3}{2} \\
1 \\
0 \\
0
\end{array}\right]
$$

(z is free)
Another way of writing this is:

$$
\left\{\begin{array}{c}
x=3+\frac{7}{2} z \\
y=-\frac{1}{2}-\frac{3}{2} z \\
z=z \\
u=\frac{1}{2} \\
v=2
\end{array}\right.
$$

(3) $A^{-1}=\left[\begin{array}{ccc}-1 & -2 & -1 \\ -1 & 3 & 1 \\ -1 & \frac{3}{2} & \frac{1}{2}\end{array}\right]$
(4) An $n \times n$ matrix A is invertible if there exists a matrix B such that $A B=B A=I$, where I is the $n \times n$ identity matrix.

Three conditions that are equivalent to invertibility are (choose your 3 favorite ones):
(a) A is row-equivalent to the $n \times n$ identity matrix
(b) A has n pivot positions
(c) $A \mathrm{x}=\mathbf{0}$ has only the trivial solution
(d) $A \mathbf{x}=\mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^{n}
(e) The columns of A form a linearly independent set
(f) The columns of A span \mathbb{R}^{n}
(g) The associated linear transformation is one-to-one
(h) The associated linear transformation is onto
(5) Ignore this
(6) No, because it is not closed under scalar multiplication! For example, $\mathbf{v}=1$ is in \mathbb{Z}, but $\sqrt{2} \mathbf{v}=\sqrt{2}$ is not in \mathbb{Z}.
(7) Yes! For example, form the matrix:

$$
A=\left[\begin{array}{lll}
1 & 2 & 7 \\
0 & 4 & 3 \\
0 & 7 & 5
\end{array}\right]
$$

And solve $A \mathbf{x}=\mathbf{0}$.
You should get $\mathbf{x}=\mathbf{0}$

