FINAL EXAM (RIBET)

PEYAM RYAN TABRIZIAN

(1) TRUE/FALSE
(a) If A is a square invertible matrix, then A and A^{-1} have the same rank.
(b) If A is an $m \times n$ matrix and if b is in \mathbb{R}^m, there is a unique $x \in \mathbb{R}^n$ for which $\|Ax - b\|$ is smallest.
(c) If A is an $n \times n$ matrix, and if v and w satisfy $Av = 2v$, $Aw = 3w$, the $v \times w = 0$.
(d) If the dimensions of the null spaces of a matrix and its transpose are equal, then the matrix is square.
(e) If A is a 2×2 matrix, then -1 cannot be an eigenvalue of A^2.
(f) I likes the linear algebra portion of this course more than the differential equations portion.
(g) If 4 linearly independent vectors lie in $\text{Span} \{w_1, \cdots, w_n\}$, then n must be at least 4.
(h) If B is invertible, then the column spaces of A and AB are equal.
(i) If A is a matrix, then the row spaces of A and $A^T A$ are equal.
(j) If 2 symmetric $n \times n$ matrices A and B have the same eigenvalues, then $A = B$.
(k) If the characteristic polynomial of A is $p(\lambda) = (\lambda - 1)(\lambda + 1)(\lambda - 3)^2$, then A has to be diagonalizable.

Date: Wednesday, December 7th, 2011.
(2) Consider the following vectors:

\[v_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \]

Find \(w_1, w_2, w_3 \) such that \(\{w_1, w_2, w_3\} \) is an orthogonal basis for \(\text{Span} \{v_1, v_2, v_3\} \).

(3) Solve the following system of differential equations:

\[
\begin{align*}
 x_1'(t) &= -2x_1(t) + 2x_2(t) \\
 x_2'(t) &= 2x_1(t) + x_2(t)
\end{align*}
\]

and \(x_1(0) = -1, x_2(0) = 3 \).

(4) Find bases for \(\text{Nul}(A), \text{Row}(A), \text{Col}(A) \), where:

\[
A = \begin{bmatrix} 1 & 1 & 3 & 2 \\ 3 & 1 & 1 & 0 \\ 4 & 2 & 4 & 2 \end{bmatrix}
\]

(5) Find the first 4 terms \(A_0, A_1, A_2, A_3 \) of the Fourier cosine series of \(f(x) = |\sin(x)| \).

Hint: \(\sin(A) \cos(B) = \frac{1}{2} [\sin(A + B) + \sin(A - B)] \)

(6) Solve the following PDE:

\[
\begin{align*}
 \frac{\partial u}{\partial t} &= 20 \frac{\partial^2 u}{\partial x^2} & 0 < x < \pi, \quad t > 0 \\
 u(0, t) &= u(\pi, t) = 0 & t > 0 \\
 u(x, 0) &= \sin(3x) - \sin(4x) & 0 < x < \pi
\end{align*}
\]

(7) Suppose \(v_1, \ldots, v_n \) are vectors in \(\mathbb{R}^n \) and that \(A \) is an \(n \times n \) matrix.

If \(Av_1, \ldots, Av_n \) form a basis for \(\mathbb{R}^n \), show that \(v_1, \ldots, v_n \) form a basis of \(\mathbb{R}^n \) and that \(A \) is invertible.
(8) Let \(v_1 = \begin{bmatrix} 0 \\ 5 \\ -2 \end{bmatrix}, \ v_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ v_3 = \begin{bmatrix} 9 \\ 8 \\ 7 \end{bmatrix} \)

Suppose \(A \) is the \(3 \times 3 \) matrix for which \(Av_1 = v_1, \ Av_2 = 0, \ Av_3 = 5v_3 \).
Find an invertible matrix \(P \) and a diagonalizable matrix \(D \) such that \(A = PDP^{-1} \).