Coupled Harmonic Oscillators

Peyam Tabrizian

Friday, November 18th, 2011

This handout is meant to summarize everything you need to know about the coupled harmonic oscillators for the final exam.

Note: In what follows we will assume that all masses $m=1$ and all spring constants $k=1$.

1 Case $N=2$ (two harmonic oscillators)

Question: Find the proper frequencies and eigenvectors / proper modes of two coupled harmonic oscillators.

Equation:
$\mathrm{x}^{\prime \prime}=A \mathrm{x}$, where:

$$
\mathbf{x}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right], \quad A=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]
$$

Proper frequencies:
Find the eigenvalues of the matrix $A: \lambda=-1,-3$

Fact: The proper frequencies are $\pm \sqrt{\lambda}$.
Hence the proper frequencies are: $\pm \sqrt{-1}= \pm i, \pm \sqrt{-3}= \pm \sqrt{3} i$.
Proper modes:
To find the modes, use the following trick: Since $N=2, N+1=3$, hence all the modes will involve $\sin \left(q \frac{\pi}{3}\right)$, where q is some number. Then:

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
\sin \left(1 \frac{\pi}{3}\right) \\
\sin \left(2 \frac{\pi}{3}\right)
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
\sin \left(2 \frac{\pi}{3}\right) \\
\sin \left(4 \frac{\pi}{3}\right)
\end{array}\right]
$$

Note: The way you get the other values is by using multiples, i.e. the multiples of 1 are 1 and 2, the multiples of 2 are 2 and 4 .

Hence the proper modes are:

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2}
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2}
\end{array}\right]
$$

Note: If you ever get $\left[\begin{array}{l}0 \\ 0\end{array}\right]$, then you probably used $N=2$ instead of $N+1=3$.

2 Case $N=3$ (three harmonic oscillators)

Question: Find the proper frequencies and eigenvectors / proper modes of three coupled harmonic oscillators.

Equation:
$\mathrm{x}^{\prime \prime}=A \mathrm{x}$, where:

$$
\mathbf{x}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right], \quad A=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -2
\end{array}\right]
$$

Proper frequencies:
Find the eigenvalues of the matrix $A: \lambda=-2,-2-\sqrt{2},-2+\sqrt{2}$
Fact: The proper frequencies are $\pm \sqrt{\lambda}$.

Hence the proper frequencies are:

$$
\pm \sqrt{-2}= \pm \sqrt{2} i, \quad \pm \sqrt{-2-\sqrt{2}}= \pm(\sqrt{2+\sqrt{2}}) i, \quad \pm \sqrt{-2+\sqrt{2}}= \pm(\sqrt{2-\sqrt{2}}) i
$$

Proper modes:
To find the modes, use the following trick: Since $N=3, N+1=4$, hence all the modes will involve $\sin \left(q \frac{\pi}{4}\right)$, where q is some number. Then:

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
\sin \left(1 \frac{\pi}{4}\right) \\
\sin \left(2 \frac{\pi}{4}\right) \\
\sin \left(3 \frac{\pi}{4}\right)
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
\sin \left(2 \frac{\pi}{4}\right) \\
\sin \left(4 \frac{\pi}{4}\right) \\
\sin \left(6 \frac{\pi}{4}\right)
\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}
\sin \left(3 \frac{\pi}{4}\right) \\
\sin \left(6 \frac{\pi}{4}\right) \\
\sin \left(9 \frac{\pi}{4}\right)
\end{array}\right]
$$

Note: The way you get the other values is by using multiples, i.e. the multi-
ples of 1 are 1,2 and 3 , the multiples of 2 are 2,4 and 6 , the multiples of 3 are 3 , 6 , and 9 .

Hence the proper modes are:

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
1 \\
\frac{\sqrt{2}}{2}
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
-1 \\
\frac{\sqrt{2}}{2}
\end{array}\right]
$$

Note: If you get $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, then you probably used $N=3$ instead of $N+1=4$.

3 General case

Equation: $\mathrm{x}^{\prime \prime}=A \mathbf{x}$

$$
A=\left[\begin{array}{cccccc}
-2 & 1 & 0 & \cdots & 0 & \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 1 & -2
\end{array}\right]
$$

Proper frequencies: $\pm 2 i \sin \left(\frac{k \pi}{2(N+1)}\right), k=1,2, \cdots N$
Proper modes: $\quad \mathbf{v}_{\mathbf{k}}=\left[\begin{array}{c}\sin \left(\frac{k \pi}{N+1}\right) \\ \sin \left(\frac{2 k \pi}{N+1}\right) \\ \vdots \\ \sin \left(\frac{N k \pi}{N+1}\right)\end{array}\right]$

