Volume - Extravaganza

Peyam Ryan Tabrizian

Tuesday, May 3rd, 2011

1 Disk Method

1.1 Rotating about the x-axis, or $y=k$ (typical case)

$$
V=\int_{a}^{b} \pi(f(x)-k)^{2} d x
$$

1.2 Rotating about the y-axis, or $x=k$ (weird case, need to solve for x in terms of y)

$$
V=\int_{a}^{b} \pi(f(y)-k)^{2} d y
$$

Tip: Use this when your region is attached to your axis of rotation

2 Washer Method

2.1 Rotating about the x-axis, or $y=k$ (typical case, vertical washers)

$$
V=\int_{a}^{b} \pi\left((\text { Outer })^{2}-(\text { Inner })^{2}\right) d x
$$

Where Outer $=$ Bigger function $-k$, Inner $=$ Smaller function $-k$
2.2 Rotating about the y-axis, or $x=k$ (weird case, horizontal washers, need to solve for x in terms of y)

$$
V=\int_{a}^{b} \pi\left((\text { Outer })^{2}-(\text { Inner })^{2}\right) d y
$$

Where Outer $=$ Rightmost function $-k$, Inner $=$ Leftmost function $-k$
Tip: Use this when the disk method fails, i.e. your region is not glued to your axis of rotation.

Note: Make sure your answer is positive. In some rare cases (see section), what you think is the bigger function is actually the smaller function! Basically, if you get a negative answer, the correct answer is minus your answer!

3 Shell method

3.1 Rotating about the y-axis, or $x=k$ (typical case, vertical rectangles/shells)

$$
V=\int_{a}^{b} 2 \pi|x-k|(\text { Bigger - Smaller }) d x
$$

3.2 Rotating about the x-axis, or $y=k$ (weird case, horizontal rectangles/shells, need to solve for x in terms of y)

$$
V=\int_{a}^{b} 2 \pi|y-k|(\text { Rightmost }- \text { Leftmost }) d y
$$

Tip: Use it when the washer method fails/is too complicated, typically when you can't solve for x in terms of y. It's also very helpful for more abstract problems!

Tip: Here's an easy way to memorize those formulas: If you're rotating about $x=k$, then $x-k=0$, so your formula should involve $|\mathbf{x}-\mathbf{k}|$. Similarly, for $y=k, y-k=0$, so your formula should involve $|\mathbf{y}-\mathbf{k}|$.

4 Other method

If you're given that the cross-sections are triangles or squares or other familiar geometric objects (see practice final), you need to use the original definition of volume:

4.1 Vertical Slices

$$
V=\int_{a}^{b} A(x) d x
$$

4.2 Horizontal Slices

$$
V=\int_{a}^{b} A(y) d y
$$

