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1. THE FUNDAMENTAL THEOREM OF CALCULUS

Theorem 1 (Fundamental Theorem of Calculus - Part I). If f is continuous on [a, b], then
the function g defined by:

g(x) =

∫ x

a

f(t)dt a ≤ x ≤ b

is continuous on [a, b], differentiable on (a, b) and g′(x) = f(x)

Theorem 2 (Fundamental Theorem of Calculus - Part II). If f is continuous on [a, b], then:∫ b

a

f(t)dt = F (b)− F (a)

where F is any antiderivative of f

2. PROOF OF FTC - PART I

Let x ∈ [a, b], let ε > 0 and let h be such that x+ h < b AND 0 < h < δ.

Then:

g(x+ h)− g(x)
h

=

∫ x+h

a
f(t)dt−

∫ x

a
f(t)dt

h
=

∫ x+h

x
f(t)dt

h
Now, because f is continuous at x, there exists δ > 0 such that, when |t− x| < δ, then

|f(t)− f(x)| < ε.

In particular, if t ∈ [x, x + h], we have x ≤ t ≤ x + h, so 0 < t − x ≤ h < δ, and so
in particular |t− x| < δ, and so we get |f(t)− f(x)| < ε.

This implies that −ε < f(t)− f(x) < ε, so f(x)− ε < f(t) < f(x) + ε.

Integrating this over [x, x+ h], and using our comparison inequalities, we get:

f(x)− ε < f(t) < f(x) + ε∫ x+h

x

f(x)− εdt <
∫ x+h

x

f(t)dt <

∫ x+h

x

f(x) + εdt

(f(x)− ε)
∫ x+h

x

dt <

∫ x+h

x

f(t)dt < (f(x) + ε)

∫ x+h

x

dt
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This is because f(x)− ε and f(x) + ε are constants with respect to t

(f(x)− ε) (x+ h− x) <
∫ x+h

x

f(t)dt < (f(x) + ε) (x+ h− x)

(f(x)− ε)h <
∫ x+h

x

f(t)dt < (f(x) + ε)h

(f(x)− ε) <
∫ x+h

x
f(t)dt

h
< (f(x) + ε)

(f(x)− ε) < g(x+ h)− g(x)
h

< (f(x) + ε) (by what we’ve shown above)

−ε < g(x+ h)− g(x)
h

− f(x) < ε∣∣∣∣g(x+ h)− g(x)
h

− f(x)
∣∣∣∣ < ε

And so we’ve shown that:

lim
h→0+

g(x+ h)− g(x)
h

= f(x)

Similarly, one can show that:

lim
h→0−

g(x+ h)− g(x)
h

= f(x)

And hence, we get:

lim
h→0

g(x+ h)− g(x)
h

= f(x)

But, by definition of a derivative, we have:

lim
h→0

g(x+ h)− g(x)
h

= g′(x)

And so, we finally have:

g′(x) = f(x)

And we’re done! :D
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3. PROOF OF FTC - PART II

This is much easier than Part I!

Let F be an antiderivative of f , as in the statement of the theorem.

Now define a new function g as follows:

g(x) =

∫ x

a

f(t)dt

By FTC Part I, g is continuous on [a, b] and differentiable on (a, b) and g′(x) = f(x)
for every x in (a, b).

Now define another new function H as follows:

h(x) = g(x)− F (x)
Then h is continuous on [a, b] and differentiable on (a, b) as a difference of two func-

tions with those two properties. Moreover, if x ∈ (a, b), h′(x) = g′(x) − F ′(x), but
g′(x) = f(x) by FTC Part I, and F ′(x) = f(x) by definition of antiderivative. And so
h′(x) = f(x)−f(x) = 0 for every x ∈ (a, b), and so, because in addition h is continuous
at a and b, h is constant on [a, b], and hence h(a) = h(b).

And so, in particular:

h(b) = h(a)

g(b)− F (b) = g(a)− F (a) (By definition of h)

g(b) = g(a) + (F (b)− F (a))∫ b

a

f(t)dt =

∫ a

a

f(t)dt+ (F (b)− F (a)) (By definition of g)∫ b

a

f(t)dt = 0 + F (b)− F (a)∫ b

a

f(t)dt = F (b)− F (a)


