MATH 1A - PROOF OF THE FUNDAMENTAL THEOREM OF CALCULUS

PEYAM RYAN TABRIZIAN

1. The Fundamental Theorem of Calculus

Theorem 1 (Fundamental Theorem of Calculus - Part I). If f is continuous on $[a, b]$, then the function g defined by:

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

is continuous on $[a, b]$, differentiable on (a, b) and $g^{\prime}(x)=f(x)$
Theorem 2 (Fundamental Theorem of Calculus - Part II). If f is continuous on $[a, b]$, then:

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

where F is any antiderivative of f

2. Proof of FTC - Part I

Let $x \in[a, b]$, let $\epsilon>0$ and let h be such that $x+h<b$ AND $0<h<\delta$.
Then:

$$
\frac{g(x+h)-g(x)}{h}=\frac{\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h}=\frac{\int_{x}^{x+h} f(t) d t}{h}
$$

Now, because f is continuous at x, there exists $\delta>0$ such that, when $|t-x|<\delta$, then $|f(t)-f(x)|<\epsilon$.

In particular, if $t \in[x, x+h]$, we have $x \leq t \leq x+h$, so $0<t-x \leq h<\delta$, and so in particular $|t-x|<\delta$, and so we get $|f(t)-f(x)|<\epsilon$.

This implies that $-\epsilon<f(t)-f(x)<\epsilon$, so $f(x)-\epsilon<f(t)<f(x)+\epsilon$.
Integrating this over $[x, x+h]$, and using our comparison inequalities, we get:

$$
\begin{aligned}
f(x)-\epsilon & <f(t)<f(x)+\epsilon \\
\int_{x}^{x+h} f(x)-\epsilon d t & <\int_{x}^{x+h} f(t) d t<\int_{x}^{x+h} f(x)+\epsilon d t \\
(f(x)-\epsilon) \int_{x}^{x+h} d t & <\int_{x}^{x+h} f(t) d t<(f(x)+\epsilon) \int_{x}^{x+h} d t
\end{aligned}
$$

[^0]This is because $f(x)-\epsilon$ and $f(x)+\epsilon$ are constants with respect to t

$$
\begin{aligned}
&(f(x)-\epsilon)(x+h-x)<\int_{x}^{x+h} f(t) d t<(f(x)+\epsilon)(x+h-x) \\
&(f(x)-\epsilon) h<\int_{x}^{x+h} f(t) d t<(f(x)+\epsilon) h \\
&(f(x)-\epsilon)<\frac{\int_{x}^{x+h} f(t) d t}{h}<(f(x)+\epsilon) \\
&(f(x)-\epsilon)<\frac{g(x+h)-g(x)}{h}<(f(x)+\epsilon) \quad \text { (by what we've shown above) } \\
&-\epsilon<\frac{g(x+h)-g(x)}{h}-f(x)<\epsilon \\
&\left|\frac{g(x+h)-g(x)}{h}-f(x)\right|<\epsilon
\end{aligned}
$$

And so we've shown that:

$$
\lim _{h \rightarrow 0^{+}} \frac{g(x+h)-g(x)}{h}=f(x)
$$

Similarly, one can show that:

$$
\lim _{h \rightarrow 0^{-}} \frac{g(x+h)-g(x)}{h}=f(x)
$$

And hence, we get:

$$
\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=f(x)
$$

But, by definition of a derivative, we have:

$$
\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=g^{\prime}(x)
$$

And so, we finally have:

$$
g^{\prime}(x)=f(x)
$$

And we're done! :D

3. Proof of FTC - Part II

This is much easier than Part I!
Let F be an antiderivative of f, as in the statement of the theorem.
Now define a new function g as follows:

$$
g(x)=\int_{a}^{x} f(t) d t
$$

By FTC Part I, g is continuous on $[a, b]$ and differentiable on (a, b) and $g^{\prime}(x)=f(x)$ for every x in (a, b).

Now define another new function H as follows:

$$
h(x)=g(x)-F(x)
$$

Then h is continuous on $[a, b]$ and differentiable on (a, b) as a difference of two functions with those two properties. Moreover, if $x \in(a, b), h^{\prime}(x)=g^{\prime}(x)-F^{\prime}(x)$, but $g^{\prime}(x)=f(x)$ by FTC Part I, and $F^{\prime}(x)=f(x)$ by definition of antiderivative. And so $h^{\prime}(x)=f(x)-f(x)=0$ for every $x \in(a, b)$, and so, because in addition h is continuous at a and b, h is constant on $[a, b]$, and hence $h(a)=h(b)$.

And so, in particular:

$$
\begin{aligned}
h(b) & =h(a) \\
g(b)-F(b) & =g(a)-F(a) \quad(\text { By definition of } h) \\
g(b) & =g(a)+(F(b)-F(a)) \\
\int_{a}^{b} f(t) d t & \left.=\int_{a}^{a} f(t) d t+(F(b)-F(a)) \quad \text { (By definition of } g\right) \\
\int_{a}^{b} f(t) d t & =0+F(b)-F(a) \\
\int_{a}^{b} f(t) d t & =F(b)-F(a)
\end{aligned}
$$

[^0]: Date: Wednesday, November 17th, 2010.

