PRACTICE FINAL (JONES) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1) E
(2) B
(3) C (don't worry about that one)
(4) A (remember that zeros of f^{\prime} usually, but not always, correspond to local max/min of f)
(5) $\mathrm{B}(y=x$ is a S.A. at $\pm \infty$, and $f(0)=1)$
(6) E
(7) D
(8) A (use the Pythagorean theorem)
(9) A
(10) A
(11) C (l'Hopital's rule)
(12) A
(13) C
(14) E (calculate the first few derivatives and notice the pattern)
(15) E
(16) (i) $-2 \sin (x)+C$ (use $\sin (2 x)=2 \sin (x) \cos (x)$)
(ii) $-\frac{3}{20}(3-5 x)^{\frac{4}{3}}+C(u=3-5 x)$
(iii) $\frac{\left(\sin ^{-1} x\right)^{2}}{2}+C\left(u=\sin ^{-1} x\right)$
(iv) $\frac{1}{3}\left(x^{2}+a^{2}\right)^{\frac{3}{2}}+C\left(u=x^{2}+a^{2}\right)$
(v) $-\frac{1}{\pi} \sin \left(\frac{\pi}{x}\right)+C\left(u=\frac{\pi}{x}\right)$
(17) (i) $\frac{11}{2}$ (Interpret this question as asking to find the area under the curve of $y=$ $6-9 x+3 x^{2}=3(x-1)(x-2)$ from 0 to 3
(ii) $\frac{e^{\pi}-1}{\pi}(u=\pi t)$
(iii) $\frac{\pi}{4}\left(=\tan ^{-1}(1)-\tan ^{-1}(0)\right)$
(iv) $2(u=\ln (x))$
(v) 0 (odd function!)
(18) (i) 0 (trick question! This is not a Riemann sum! Use $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$)
(ii) $\int_{0}^{1} \sqrt{1-x^{2}} d x=\frac{\pi}{4}$ (quarter of a circle)
(iii) 0 (l'Hopital's rule)
(iv) 0 (l'Hopital's rule, but only applied once!)
(v) 0 (plug it in directly!)
(19) (i) $\frac{\left(x^{3}+1\right)-x\left(3 x^{2}\right)}{\left(x^{3}+1\right)^{2}}$
(ii) $-2 e^{-x^{2}}+4 x^{2} e^{-x^{2}}$
(iii) $\left(\frac{\cosh \left(e^{2 x}\right)}{1+e^{4 x}}\right) e^{x}-\frac{\cosh \left(x^{2}\right)}{1+x^{4}}$
(iv) $x^{-x}(-\ln (x)+1)$ (logarithmic differentiation)
(v) $-\sin (x)$ (notice the pattern! Also, $50=12 \times 4+2$)
(20) π (draw a good picture! The volume is the same as the volume of a cone with height 1 and radius 1)
(21) $\pi \int_{0}^{1}\left(x^{3}-2\right)^{2}-\left(x^{2}-2\right)^{2} d x=\frac{29 \pi}{105}$ (washer method)

