Optimization

Peyam Ryan Tabrizian

Wednesday, March 30th, 2011

How to solve optimization problems

1) Draw a picture!, labeling all your variables. This time, you can put numbers on your picture (in contrast to related rates problems)
2) Find a function of one variable which you want to maximize/minimize (here is where you use all the info that is given to you)
3) Find the constraint. Sometimes, there's an 'open interval' constraint like $x>0$, and sometimes there's a 'closed interval' constraint, like $3 \leq x \leq 6$)
4) Find the absolute maximum or minimum of your function in 2) given the constraint in 3). If your constraint is a closed interval, use the maximization technique from section 4.1. In all the other cases, use the following theorem:

Theorem (First Derivative Test for Absolute Extreme Values). Suppose c is a critical number of f. Then:

- If $f^{\prime}(x)>0$ for all $x<c$ and $f^{\prime}(x)<0$ for all $x>c$, then $f(c)$ is the absolute maximum value of f
- If $f^{\prime}(x)<0$ for all $x<c$ and $f^{\prime}(x)>0$ for all $x>c$, then $f(c)$ is the absolute minimum value of f

List of tricks

- Formulas for areas and/or volumes
- Formula for the distance between two points
- Definition of $\sin (\theta), \cos (\theta)$, etc.

Note: You don't always need to find the maximizer explicitly! Sometimes you may stop at things like $\cos (\theta)=\frac{1}{3}$ and then maximize your function using this info (see problems 6 and the review session on Monday evening)

Problem 1

[4.7.16] What is the largest possible area of a rectangle with perimeter $16 ?$

Problem 2

[4.7.18] Find the point on the line $6 x+y=9$ that is closest to the point $(-3,1)$

Problem 3

[4.7.22] Find the area of the largest rectangle that can be inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Problem 4

[4.7.46] [HARD] A woman at a point A on the shore of a circular lake with radius $2 m i$ wants to arrive at the point C diametrically opposite A on the other side of the lake in the shortest possible time. She can walk at the rate of 4 mph and row a boat at 2 mph . How should she proceed?

1A/Handouts/Shore.png

Problem 5

[4.7.52] At which points on the curve $y=1+40 x^{3}-3 x^{5}$ does the tangent line have largest slope?

Problem 6

[4.7.40] Suppose $F(\theta)=\frac{\mu W}{\mu \sin (\theta)+\cos (\theta)}$. Show that F is maximized if $\tan (\theta)=\mu$

