4.5.11.

D : \(\mathbb{R} - \{ \pm 3 \} \)

I : No \(x \)-intercepts, \(y \)-intercept: \(y = -\frac{1}{9} \)

S : \(f \) is even

A : Horizontal Asymptote \(y = 0 \) (at \(\pm \infty \)), Vertical Asymptotes \(x = \pm 3 \)

I : \(f'(x) = -\frac{2x}{(x^2-9)^2} \); \(f \) is increasing on \((-\infty, -3) \cup (-3, 0)\) and decreasing on \((0, 3) \cup (3, \infty) \). Local maximum of \(-\frac{1}{9} \) at 0.

C : \(f''(x) = 6 \frac{x^2+3}{(x^2-9)^3} \); \(f \) is concave up on \((-\infty, -3) \cup (3, \infty)\) and concave down on \((-3, 3)\); No inflection points

1A/Homeworks/hw10graph1.png

4.5.31.

Note: First of all, \(f \) is periodic of period \(2\pi \), so we’re only focusing on \([0, 2\pi]\).

D : \(\mathbb{R} \)

I : \(x \)-intercepts: \(x = 0, x = 2\pi \) (basically you should get \(\sin(x) = 3 \), which is impossible), \(y \)-intercept: \(y = 0 \)

S : Again, \(f \) is periodic of period \(2\pi \). Also, \(f \) is odd.

A : No asymptotes

Date: Monday, April 11th, 2011.
\[f'(x) = 3 \cos(x) - 3 \cos(x) \sin(x) = 3 \cos(x)(1 - \sin^2(x)) = 3 \cos^3(x); \]
Increasing on \((0, \frac{\pi}{2}) \cup (\frac{3\pi}{2}, 2\pi)\); Decreasing on \((\frac{\pi}{2}, \frac{3\pi}{2})\). Local maximum of 2 at \(x = \frac{\pi}{2}\). Local minimum of \(-1\) at \(x = \frac{3\pi}{2}\).

\[f''(x) = -9 \sin(x) \cos^2(x); \]
Concave down on \((0, \pi)\) and Concave up on \((\pi, 2\pi)\). Inflection point \((\pi, 0)\)

4.5.41.

D : \(\mathbb{R}\)
I : No \(x\)-intercepts, \(y\)-intercept: \(y = \frac{1}{2}\)
S : No symmetries
A : Horizontal Asymptotes: \(y = 0\) (at \(-\infty\)), \(y = 1\) (at \(\infty\))
I : \(f'(x) = \frac{e^{-x}}{(1+e^{-x})^2} > 0 \), so \(f\) is decreasing on \(\mathbb{R}\)
C : \(f''(x) = \frac{e^{-x} - 1}{(e^{x}+1)^3} \) (multiply numerator and denominator by \((e^x)^3\) after simplifying), so \(f\) is concave down on \((\infty, 0)\) and concave up on \((0, \infty)\). Inflection point at \((0, \frac{1}{2})\)
Note: First of all, \(f \) is periodic of period \(2\pi \), so from now on we may assume that \(x \in [0, 2\pi] \).

D: We want \(\sin(x) > 0 \), so the domain is \((0, \pi)\).

I: No \(y \)-intercepts, \(x \)-intercepts: Want \(\ln(\sin(x)) = 0 \), so \(\sin(x) = 1 \), so \(x = \frac{\pi}{2} \).

S: Again, \(f \) is periodic of period \(2\pi \).

A: No horizontal/slant asymptotes, but \(\lim_{x \to 0^+} \ln(\sin(x)) = \ln(0^+) = -\infty \), so \(x = 0 \) is a vertical asymptote. Also \(\lim_{x \to \pi^-} \ln(\sin(x)) = -\infty \), so \(x = \pi \) is also a vertical asymptote.

I: \(f''(x) = \frac{\cos(x)}{\sin(x)} = \cot(x) \), then \(f'(x) = 0 \leftrightarrow x = \frac{\pi}{2} \), and using a sign table, we can see that \(f \) is increasing on \((0, \frac{\pi}{2})\) and decreasing on \((\frac{\pi}{2}, \pi)\).

Moreover, \(f(\frac{\pi}{2}) = \ln(1) = 0 \) is a local maximum of \(f \).

C: \(f''(x) = -\csc^2(x) < 0 \), so \(f \) is concave down on \((0, \pi)\).
1A/Homeworks/hw10graph.png
4.7.3.
- Want to minimize $x + y$
- But $xy = 100$, so $y = \frac{100}{x}$, so $x + y = x + \frac{100}{x}$
- Let $f(x) = x + \frac{100}{x}$
- $x > 0$ (x is positive)
- $f'(x) = 0 \iff \frac{1}{x} - \frac{100}{x^2} = 0 \iff x^2 = 100 \iff x = 10$
- By FDTAEV, $x = 100$ is the absolute minimum of f
- Answer: $x = 100, y = \frac{100}{100} = 1$

4.7.11. The picture is as follows:

![Fence.png](1A/Practice Exams/Fence.png)

- Want to minimize $3w + 4l$.
- But $2lw = 1.5$, so $l = \frac{0.75}{w}$, so $3w + 4l = 3w + \frac{3}{w}$
- Let $f(w) = 3w + \frac{3}{w}$
- $w > 0$
- $f'(w) = 0 \iff 3 - \frac{3}{w^2} = 0 \iff w^2 = 1 \iff w = 1$
- By FDTAEV, $w = 1$ is the absolute minimum of f
- Answer: $w = 1, 2l = 1.5$

4.7.19.
- We have $D = \sqrt{(x - 1)^2 + y^2}$, so $D^2 = (x - 1)^2 + y^2$
- But $y^2 = 4 - 4x^2$, so $D^2 = (x - 1)^2 + 4 - 4x^2$
- Let $f(x) = (x - 1)^2 + 4 - 4x^2$
- No constraints
- $f'(x) = 2(x - 1) - 8x = -6x - 2 = 0 \iff x = -\frac{1}{3}$
- By the FDTAEV, $x = -\frac{1}{3}$ is the maximizer of f
- Since $y^2 = 4 - 4x^2$, we get $y^2 = 4 - \frac{4}{9} = \frac{32}{9}$, so $y = \pm \sqrt{\frac{32}{9}} = \pm \frac{4\sqrt{2}}{3}$
4.7.21. Picture:

\[x^2 + y^2 = r \]

- We have \(A = xy \), but the trick here again is to maximize \(A^2 = x^2y^2 \) (thanks for Huiling Pan for this suggestion!)
- But \(x^2 + y^2 = r^2 \), so \(y^2 = r^2 - x^2 \), so \(A^2 = x^2(r^2 - x^2) = x^2y^2 - x^4 \)
- Let \(f(x) = x^2y^2 - x^4 \)
- Constraint \(0 \leq x \leq r \) (look at the picture)
- \(f'(x) = 2xy^2 - 4x^3 = 0 \iff x = 0 \) or \(x = \frac{r}{\sqrt{2}} \)
- By the closed interval method, \(x = \frac{r}{\sqrt{2}} \) is a maximizer of \(f \) (basically \(f(0) = f(r) = 0 \)
- Answer: \(x = \frac{r}{\sqrt{2}}, y = \sqrt{r^2 - \frac{x^2}{2}} = \frac{r}{\sqrt{2}} \)

4.7.30.

- Let \(w \) be the width of the rectangle, and \(h \) the height of the rectangle.
- We have \(A = wh + \pi(\frac{w}{2})^2 = wh + \frac{\pi}{4}w^2 \), but \(w + 2h + 2\pi \frac{w}{2} = 30 \), so \(2h + \pi w + w = 30 \), so \(h = \frac{30 - (\pi + 1)w}{2} \). Hence \(A = w\left(\frac{30 - (\pi + 1)w}{2}\right) + \frac{\pi}{4}w^2 \)
- Let \(f(w) = w\left(\frac{30 - (\pi + 1)w}{2}\right) + \frac{\pi}{4}w^2 \)
- Constraint: \(w > 0 \)
- \(f'(w) = 15 - \frac{(\pi + 2)}{2}w = 0 \iff w = \frac{30}{\pi + 2} \) (there’s a big cancellation going on!)
- By FDTEAEV, \(w = \frac{30}{\pi + 2} \) is the maximizer of \(f \)
- Answer: \(w = \frac{30}{\pi + 2}, h = \frac{15}{\pi + 2} \)
4.7.53. (a) \(c'(x) = \frac{C'(x)x - C(x)}{x^2} \). When \(c \) is at its minimum, \(c'(x) = 0 \), so \(C'(x)x - C(x) = 0 \), so \(C'(x) = \frac{C(x)}{x} = c(x) \), so \(C'(x) = c(x) \), i.e. marginal cost equals the average cost!

4.7.63. (thank you Brianna Grado-White for the solution to this problem!)

The picture is as follows:

Here, \(h_1 \) and \(h_2 \) and \(L \) are fixed, but \(x \) varies.
Now the total time taken is \(t = t_1 + t_2 = \frac{d_1}{v_1} + \frac{d_2}{v_2} \).

Now, by the Pythagorean theorem: \(d_1 = \sqrt{x^2 + h_1^2} \) and \(d_2 = \sqrt{(L - x)^2 + h_2^2} \), so we get:

\[
t(x) = \frac{\sqrt{x^2 + h_1^2}}{v_1} + \frac{\sqrt{(L - x)^2 + h_2^2}}{v_2}
\]

And

\[
t'(x) = \frac{x}{v_1 \sqrt{x^2 + h_1^2}} + \frac{x - L}{v_2 \sqrt{(L - x)^2 + h_2^2}} = \frac{x}{v_1 d_1} + \frac{x - L}{v_2 d_2}
\]

Setting \(t'(x) = 0 \) and cross-multiplying, we get:

\[
v_1 d_1 (L - x) = v_2 d_2 x
\]

So, by definition of \(\sin(\theta_1) \) and \(\sin(\theta_2) \), we get:

\[
\frac{v_1}{v_2} = \frac{d_2 x}{(L - x) d_1} = \frac{\frac{d_2 x}{d_1}}{\frac{L - x}{d_2}} = \frac{\sin(\theta_1)}{\sin(\theta_2)}
\]
Section 4.9: Antiderivatives

4.9.7. \(F(x) = 5 \frac{x^3}{x} - 4x^2 + C \)

4.9.24. \(f'(x) = 2x + \frac{1}{4}x^4 + \frac{1}{4}x^7 + A \), so \(f(x) = x^2 + \frac{1}{20}x^5 + \frac{1}{80}x^8 + Ax + B \)

4.9.33. \(f(x) = -2 \sin(t) + \tan(t) + C \), but \(4 = f\left(\frac{\pi}{3}\right) = -\sqrt{3} + \sqrt{3} + C = C \), so \(f(x) = -2 \sin(t) + \tan(t) + 4 \)

4.9.33. If \(f''(\theta) = \sin(\theta) + \cos(\theta) \), then \(f'(\theta) = -\cos(\theta) + \sin(\theta) + C \).

Hence \(f'(\theta) = -\sin(\theta) - \cos(\theta) + 5\theta + C' \).

\(f(0) = 3 \), so \(-0 + 0 + C' = 3 \), so \(C' = 3 \).

Hence \(f'(\theta) = -\sin(\theta) - \cos(\theta) + 5\theta + 4 \)

4.9.61. \(a(t) = 10 \sin(t) + 3 \cos(t) \), so \(v(t) = -10 \cos(t) + 3 \sin(t) + A \), so \(s(t) = -10 \sin(t) - 3 \cos(t) + At + B \)

Now, \(s(0) = 0 \), but \(s(0) = -10(0) - 3(1) + A(0) + B \), so \(-3 + B = 0 \), so \(B = 3 \)

So \(s(t) = -10 \sin(t) - 3 \cos(t) + At + 3 \)

Moreover, \(s(2\pi) = 12 \), but \(s(2\pi) = -10(0) - 3(1) + A(2\pi) + 3 = A(2\pi) \), so \(A(2\pi) = 12 \), so \(A = \frac{12}{2\pi} = \frac{6}{\pi} \)

So altogether, you get: \(s(t) = -10 \sin(t) - 3 \cos(t) + \frac{6}{\pi}t + 3 \)

4.9.74. First of all, the acceleration of the car is \(a(t) = -16 \), so \(v(t) = -16t + C \).

We want to find \(v(0) = C \), so once we find \(C \), we’re done!

Let \(t^* \) be the time when the car comes to a stop.
Then \(v(t^*) = 0 \), so \(-16t^* + C = 0 \), so \(C = 16t^* \). So once we find \(t^* \), we’re done!

Now we know that \(s(t^*) - s(0) = 200 \), but \(s(t) = -8t^2 + C + C' \), so \(200 = -8(t^*)^2 + C + C' + 0 - C(0) - C' = -8(t^*)^2 + 16t^* \), so \(8(t^*)^2 = 200 \), so \((t^*)^2 = 25 \) so \(t^* = 5 \) (assuming time is positive)

Whence \(v(0) = C = 16t^* = 80 \)