Problem: A number a is called a fixed point of a function f if $f(a) = a$ (for example, 1 is a fixed point of $f(x) = x^2$). Prove that if $f'(x) \neq 1$ for all x, then f has at most one fixed point.

Solution:

This is again a proof by contradiction!

Suppose f has (at least) two fixed points a and b.

Then, by definition of a fixed point, $f(a) = a$, and $f(b) = b$.

However, by the Mean Value Theorem, there is a c in (a, b) such that:

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Now using the fact that $f(b) = b$ and $f(a) = a$, we get:

$$\frac{b - a}{b - a} = f'(c)$$

So

$$1 = f'(c)$$

That is, $f'(c) = 1$. However, by assumption, $f'(x) \neq 1$ for all x, so in particular setting $x = c$ gives $f'(c) \neq 1$.

but since $f'(c) = 1$, we get $1 \neq 1$, which is a contradiction!

Hence f has at most one fixed point!