MATH 1A - SOLUTION TO 4.1.57

PEYAM RYAN TABRIZIAN

1) Evaluate f at the endpoints 0 and $\frac{\pi}{2}$

$$
f(0)=2+0=2, f\left(\frac{\pi}{2}\right)=0+0=0
$$

2) Find the critical numbers of f

$$
\begin{aligned}
& f^{\prime}(t)=-2 \sin (t)+2 \cos (2 t) \\
& f^{\prime}(t)=0 \\
&-2 \sin (t)+2 \cos (2 t)=0 \\
& \sin (t)=\cos (2 t)
\end{aligned}
$$

Here comes the tricky part! This seems impossible to solve, but ideally we'd like to write the right-hand-side just in terms of $\sin (x)$ in order to have a shot at solving this!

Start with $\cos (2 t)=\cos ^{2}(t)-\sin ^{2}(t)$ (the double-angle formula for \cos).
Moreover $\cos ^{2}(t)=1-\sin ^{2}(t)$ (because $\left.\cos ^{2}(t)+\sin ^{2}(t)=1\right)$
So we get $\cos (2 t)=1-\sin ^{2}(t)-\sin ^{2}(t)=1-2 \sin ^{2}(t)$. So our original equation becomes:

$$
\sin (t)=1-2 \sin ^{2}(t)
$$

which you can rewrite as $2 \sin ^{2}(t)+\sin (t)-1=0$.
This again looks impossible to solve, but notice that this is just a quadratic equation in $\sin (t)$! So let $X=\sin (t)$, then we get:

$$
2 X^{2}+X-1=0
$$

And using the quadratic formula (or your factoring skills), we get:

$$
(2 X-1)(X+1)=0
$$

So $X=\frac{1}{2}$ or $X=-1$. That is, $\sin (t)=\frac{1}{2}$ or $\sin (t)=-1$.
HOWEVER, remember that we're only focusing on $\left[0, \frac{\pi}{2}\right]$, so in particular $\sin (t)=$ $\frac{1}{2}$ has only one solution in $\left[0, \frac{\pi}{2}\right]$, namely $t=\frac{\pi}{6}$, and $\sin (t)=-1$ has NO solution in $\left[0, \frac{\pi}{2}\right]$.

[^0]It follows that the only critical number of f in $\left[0, \frac{\pi}{2}\right]$ is $t=\frac{\pi}{6}$ (there are no numbers where f is not differentiable, so in fact those are all the critical numbers). And we get $f\left(\frac{\pi}{6}\right)=\sqrt{3}+\frac{\sqrt{3}}{2}=\frac{3 \sqrt{3}}{2}$
3) Compare all the candidates you have:

Our candidates are $f(0)=2, f\left(\frac{\pi}{2}\right)=0$ and $f\left(\frac{\pi}{6}\right)=\frac{3 \sqrt{3}}{2} \approx 2.59$.
Hence, the absolute minimum of f on $\left[0, \frac{\pi}{2}\right]$ is $f\left(\frac{\pi}{2}\right)=0$ (the smallest candidate), and the absolute maximum of f on $\left[0, \frac{\pi}{2}\right]$ is $f\left(\frac{\pi}{6}\right)=\frac{3 \sqrt{3}}{2}$ (the largest candidate)

[^0]: Date: Monday, March 14th, 2011.

