1) As usual, let’s draw a picture of the situation:

Here, x is the distance between the runner and the friend, and s is the length of the arc corresponding to θ.

2) We want to figure out $\frac{dx}{dt}$ when $x = 200$

3) Looking at the picture, it looks like we should use the law of cosines (because we have info about θ and about 2 of the 3 sides of the triangle)
\[x^2 = 100^2 + 200^2 - 2(100)(200) \cos(\theta) \]

In other words:
\[x^2 = 50000 - 40000 \cos(\theta) \]

4) Hence \(2x \frac{dx}{dt} = 40000 \sin(\theta) \frac{d\theta}{dt} \)

5) First of all \(x = 200 \) in this case. Also, by definition of a radian, we know that \(s = 100\theta \), whence \(\frac{ds}{dt} = 100 \frac{d\theta}{dt} \). But we’re given that \(\frac{ds}{dt} = 7 \text{ m/s} \), so \(\frac{d\theta}{dt} = \frac{7}{100} = 0.07 \).

So all we got to figure out is \(\sin(\theta) \)

For this, draw the same picture as above, except you let \(x = 200 \). And in this case, we use the law of cosines again:
\[200^2 = 100^2 + 200^2 - 2(100)(200) \cos(\theta) \]
\[= -10000 = -40000 \cos(\theta) \]
\[\cos(\theta) = \frac{1}{4} \]

Now you can use either the triangle method to figure out what \(\sin(\theta) \) is (all you gotta do is calculate \(\sin(\cos^{-1}(\frac{1}{4})) \), or, even easier, notice that \(\sin(\theta) = \sqrt{1 - \cos^2(\theta)} \) (this works because \(\sin(\theta) > 0 \) because we assume that \(\theta \) is between 0 and \(\frac{\pi}{2} \). Hence \(\sin(\theta) = \sqrt{1 - \frac{1}{16}} = \sqrt{\frac{15}{16}} = \frac{\sqrt{15}}{4} \).

PHEW!!! Now we have all the info we need to solve the problem:
\[2x \frac{dx}{dt} = 40000 \sin(\theta) \frac{d\theta}{dt} \]
\[2(200) \frac{dx}{dt} = 40000 \left(\frac{\sqrt{15}}{4} \right)(0.07) \]
\[400 \frac{dx}{dt} = 700 \sqrt{15} \]
\[\frac{dx}{dt} = \frac{7}{4} \sqrt{15} \]

Hence \(\frac{dx}{dt} = \frac{7}{4} \sqrt{15} \)