MATH 1A - SOLUTION TO 3.9.38

PEYAM RYAN TABRIZIAN

1) Again, draw a picture of the situation:

Here, x is the distance between P and the beam of light.
2) We want to figure out $\frac{d x}{d t}$ when $x=1$
3) Looking at the picture, because we have info about the derivative of θ (see below), we use the definition of $\tan (\theta)$:

$$
\tan (\theta)=\frac{x}{3}
$$

So $x=3 \tan (\theta)$

[^0]4) Hence $\frac{d x}{d t}=3 \sec ^{2}(\theta) \frac{d \theta}{d t}$
5) First of all, we actually know what $\frac{d \theta}{d t}$ is! Since the lighthouse makes 4 revolutions per minute and one revolution corresponds to 2π, we know that $\frac{d \theta}{d t}=-8 \pi$ (think of speed $=$ distance/time, and here time $=1$ minute, and 'distance' $=8 \pi$, also you put a minus-sign since x is decreasing!).

Moreover, by drawing the exact same picture as above, except with $x=1$, we can calculate $\sec ^{2}(\theta)$, namely:

$$
\sec (\theta)=\frac{\text { hypothenuse }}{\text { adjacent }}=\frac{\sqrt{10}}{3}
$$

And the $\sqrt{10}$ we get from the Pythagorean theorem!
It follows that $\sec ^{2}(\theta)=\left(\frac{\sqrt{10}}{3}\right)^{2}=\frac{10}{9}$.
Now we got all of the info we need to conclude the problem:

$$
\begin{aligned}
\frac{d x}{d t} & =3 \sec ^{2}(\theta) \frac{d \theta}{d t} \\
\frac{d x}{d t} & =3\left(\frac{10}{9}\right)(-8 \pi) \\
\frac{d x}{d t} & =-\frac{240 \pi}{9} \\
\frac{d x}{d t} & =-\frac{80 \pi}{3}
\end{aligned}
$$

Whence $\frac{d x}{d t}=-\frac{80 \pi}{3} \mathrm{rad} / \mathrm{min}$

[^0]: Date: Wednesday, March 9th, 2011.

