MATH 1A - SOLUTION TO 3.9.13

1) First of all, let's draw a picture of the situation, and remember to only label things that are constant!

Here, x is the distance between the street light and the man, and y is the distance between the man and the shadow. Also, let $z=x+y$, the total length of the shadow.
2) We want to figure out z^{\prime} when $x=40$.
3) Looking at the picture, we can use the law of similar triangles to conclude:

$$
\frac{y}{x+y}=\frac{6}{15}
$$

That is:

$$
\begin{aligned}
y & =\frac{2}{5}(x+y) \\
\frac{3}{5} y & =\frac{2}{5} x \\
y & =\frac{2}{3} x
\end{aligned}
$$

It follows that:

$$
z=x+y=x+\frac{2}{3} x=\frac{5}{3} x
$$

4) Hence $z^{\prime}=\frac{5}{3} x^{\prime}$
5) However, we know that $x^{\prime}=5$ (because the man is walking with a speed of $5 \mathrm{ft} / \mathrm{s}$).

Hence we get $z^{\prime}=\frac{5}{3}(5)=\frac{25}{3}$

$$
\text { So } z^{\prime}=\frac{25}{3} \text {. }
$$

Note: We did not need the fact that $x=40$!

