MATH 1A - SOLUTION TO 3.8.11

PEYAM RYAN TABRIZIAN

The problem asks about radioactive decay, so as usual, we have $y^{\prime}=k y$, so $y(t)=$ $C e^{k t}$. Now we're given two things: First of all, the half-life is $t=5730$ years, so $y(5730)=\frac{y(0)}{2}=\frac{C}{2}$. Moreover, we know that at a certain time t^{*} (we want to find t^{*}), $y\left(t^{*}\right)=0.74 y(0)=0.74 C$. Now even though we don't know what C is, we can still solve for t^{*}.

The following calculation helps us find k :

$$
\begin{aligned}
& y(5730)=\frac{C}{2} \\
& C e^{5730 k}=\frac{C}{2} \\
& e^{5730 k}=\frac{1}{2} \\
& 5730 k=\ln \left(\frac{1}{2}\right) \\
& k=\frac{\ln \left(\frac{1}{2}\right)}{5730}
\end{aligned}
$$

Whence $y(t)=C e^{\frac{\ln \left(\frac{1}{2}\right)}{5730} t}=C\left(\frac{1}{2}\right)^{\frac{t}{5730}}$
Now we're given that $y\left(t^{*}\right)=0.74 C$, and the following calculation helps us solve for t^{*} :

$$
\begin{aligned}
y\left(t^{*}\right) & =0.74 C \\
C\left(\frac{1}{2}\right)^{\frac{t^{*}}{5730}} & =0.74 C \\
\left(\frac{1}{2}\right)^{\frac{t^{*}}{5730}} & =0.74 \\
\frac{t^{*}}{5730} \ln \left(\frac{1}{2}\right) & =\ln (0.74) \\
t^{*} & =5730 \frac{\ln (0.74)}{\ln \left(\frac{1}{2}\right)} \\
t^{*} & \approx 2489
\end{aligned}
$$

So $t^{*} \approx 2489$ years (notice how we didn't even need info about C to figure this out!)

