MATH 1A - SOLUTION TO 3.7.24

PEYAM RYAN TABRIZIAN

First of all, we know two things, namely $f(0)=20$ and $f^{\prime}(0)=12$.
But by the chain rule:

$$
f^{\prime}(t)=-0.7 b e^{-0.7 t} \frac{-a}{\left(1+b e^{-0.7 t}\right)^{2}}=\frac{0.7 a b e^{-0.7 t}}{\left(1+b e^{-0.7 t}\right)^{2}}
$$

So from $f(0)=20$, we get:

$$
\frac{a}{1+b}=20
$$

And from $f^{\prime}(0)=12$, we get:

$$
\frac{0.7 a b}{(1+b)^{2}}=12
$$

From $\frac{a}{1+b}=20$, we get $a=20(1+b)$, and plugging this into the second equation, we get:

$$
\begin{aligned}
\frac{(0.7)(20)(1+b) b}{(1+b)^{2}} & =12 \\
\frac{14 b}{1+b} & =12 \\
14 b & =12(1+b) \\
14 b & =12+12 b \\
2 b & =12 \\
b= & 6
\end{aligned}
$$

And so $a=20(1+6)=20(7)=140$.
Therefore, we have $a=140$ and $b=6$.
Finally, to find out what happens in the long run, we need to calculate $\lim _{t \rightarrow \infty} f(t)$. But notice that $\lim _{t \rightarrow \infty} e^{-0.7 t}=0$, and so $\lim _{t \rightarrow \infty} f(t)=\frac{a}{1+0}=a=140$.

[^0]
[^0]: Date: Wednesday, March 9th, 2011.

