MATH 1A - SOLUTION TO 3.5.40

PEYAM RYAN TABRIZIAN

First of all, by implicit differentiation:

$$
\begin{aligned}
\frac{2 x}{a^{2}}+\frac{2 y y^{\prime}}{b^{2}} & =0 \\
y^{\prime}\left(\frac{2 y}{b^{2}}\right) & =-\frac{2 x}{a^{2}} \\
y^{\prime} & =-\frac{b^{2}}{a^{2}} \frac{2 x}{2 y} \\
y^{\prime} & =-\frac{b^{2}}{a^{2}} \frac{x}{y}
\end{aligned}
$$

It follows that the tangent line to the ellipse at $\left(x_{0}, y_{0}\right)$ has slope $-\frac{b^{2}}{a^{2}} \frac{x_{0}}{y_{0}}$, and since it goes through $\left(x_{0}, y_{0}\right)$, its equation is:

$$
y-y_{0}=\left(-\frac{b^{2}}{a^{2}} \frac{x_{0}}{y_{0}}\right)\left(x-x_{0}\right)
$$

And the rest of the problem is just a little algebra!
First of all, by multiplying both sides by $a^{2} y_{0}$, we get:

$$
\left(y-y_{0}\right)\left(a^{2} y_{0}\right)=-b^{2} x_{0}\left(x-x_{0}\right)
$$

Expanding out, we get:

$$
y a^{2} y_{0}-a^{2}\left(y_{0}\right)^{2}=-b^{2} x_{0} x+b^{2}\left(x_{0}\right)^{2}
$$

Now rearranging, we have:

$$
y a^{2} y_{0}+b^{2} x_{0} x=a^{2}\left(y_{0}\right)^{2}+b^{2}\left(x_{0}\right)^{2}
$$

Now dividing both sides by a^{2}, we get:

$$
y y_{0}+\frac{b^{2}}{a^{2}} x_{0} x=\left(y_{0}\right)^{2}+\frac{b^{2}}{a^{2}}\left(x_{0}\right)^{2}
$$

And dividing both sides by b^{2}, we get:

$$
\frac{y y_{0}}{b^{2}}+\frac{x_{0} x}{a^{2}}=\frac{\left(y_{0}\right)^{2}}{b^{2}}+\frac{\left(x_{0}\right)^{2}}{a^{2}}
$$

But now, since $\left(x_{0}, y_{0}\right)$ is on the ellipse, $\frac{\left(y_{0}\right)^{2}}{b^{2}}+\frac{\left(x_{0}\right)^{2}}{a^{2}}=1$, so we get:
Date: Wednesday, March 2nd, 2011.

$$
\frac{y y_{0}}{b^{2}}+\frac{x_{0} x}{a^{2}}=1
$$

Whence,

$$
\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1
$$

Which is what we want!

