EXTRA PROBLEMS FOR HOMEWORK 9

PEYAM RYAN TABRIZIAN

Problems

There are a total of 4 extra problems to do.

Problem 4.5.71: Show that the curve $y=x-\tan ^{-1}(x)$ has two slant asymptotes $y=x+\frac{\pi}{2}$ and $y=x-\frac{\pi}{2}$. Use this fact to help sketch the curve.

Problem 4.7.48: A woman at a point A on the shore of a circular lake with radius 2 mi wants to arrive at the point C diametrically opposite A on the other side of the lake in the shortest possible time (see the figure). She can walk at the rate of 4 mph and row a boat at 2 mph . How should she proceed?

1A/Math 1A - Fall 2013/Homeworks/Lake.png

[^0]Problem 4.7.70: A steel pipe is being carried down a hallway 9 ft wide. At the end of the hall there is a right-angled turn into a narrower hallway 6 ft wide. What is the length of the longest pipe that can be carried horizontally around the corner?

1A/Math 1A - Fall 2013/Homeworks/Pipe.png

Problem 4.9.77: A car is traveling at $100 \mathrm{~km} / \mathrm{h}$ when the driver sees an accident 80 m ahead and slams on the brakes. What constant decceleration is required to stop the car in time to avoid a pileup?

Solutions

Solution to 4.5.71. :

At ∞ :

Suppose the slant asymptote is $y=a x+b$, then:

$$
\begin{gathered}
a=\lim _{x \rightarrow \infty} \frac{x-\tan ^{-1}(x)}{x}=\lim _{x \rightarrow \infty} 1-\frac{\tan ^{-1}(x)}{x}=1-\frac{\frac{\pi}{2}}{\infty}=1 \\
b=\lim _{x \rightarrow \infty} x-\tan ^{-1}(x)-x=\lim _{x \rightarrow \infty}-\tan ^{-1}(x)=-\frac{\pi}{2}
\end{gathered}
$$

Hence $x-\tan ^{-1}(x)$ has a slant asymptote of $y=x-\frac{\pi}{2}$ at ∞

At $-\infty$:

Suppose the slant asymptote is $y=a x+b$, then:

$$
\begin{aligned}
& a=\lim _{x \rightarrow-\infty} \frac{x-\tan ^{-1}(x)}{x}=\lim _{x \rightarrow-\infty} 1-\frac{\tan ^{-1}(x)}{x}=1-\frac{\frac{\pi}{2}}{-\infty}=1 \\
& b=\lim _{x \rightarrow-\infty} x-\tan ^{-1}(x)-x=\lim _{x \rightarrow-\infty}-\tan ^{-1}(x)=-\left(-\frac{\pi}{2}\right)=\frac{\pi}{2}
\end{aligned}
$$

Hence $x-\tan ^{-1}(x)$ has a slant asymptote of $y=x+\frac{\pi}{2}$ at $-\infty$

D $\operatorname{Dom}=\mathbb{R}$
I y-intercept: $f(0)=0, x$-intercept: 0 (there are no others, because f is increasing; see Increasing/Decreasing section)
S No symmetries
A No vertical asymptotes (f is defined everywhere), Slant Asymptotes $y=$ $x-\frac{\pi}{2}$ at $\infty, y=x+\frac{\pi}{2}$ at $-\infty$; No H.A. because there are already two S.A.
I $f^{\prime}(x)=1-\frac{1}{1+x^{2}}=\frac{x^{2}}{1+x^{2}} \geq 0$, so f is increasing everywhere; No local \max / \min
C $f^{\prime \prime}(x)=\frac{2 x\left(1+x^{2}\right)-x^{2}(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{2 x}{\left(1+x^{2}\right)^{2}}$, so f is concave down on $(-\infty, 0)$ and concave up on $(0, \infty)$. Inflection point $(0, f(0))=(0,0)$

1A/Math 1A - Fall 2013/Homeworks/x - arctan(x).png

Solution to 4.7.48:

- Let $t_{A B}$ be the time spent rowing from A to B and $t_{B C}$ be the time spent walking from B to C
- By the formula time $=\frac{\text { distance }}{\text { velocity }}$, we have:

$$
\begin{gathered}
t_{A B}=\frac{A B}{2}=\frac{\cos (\theta) A C}{2}=\frac{4 \cos (\theta)}{2}=2 \cos (\theta) \\
t_{B C}=\frac{B C}{4}=\frac{2 \times \angle B O C}{4}=\frac{2 \times 2 \theta}{4}=\theta
\end{gathered}
$$

(here O is the origin; it is a geometric fact that $\angle B O C=2 \angle B A C$)

- Let $f(\theta)=2 \cos (\theta)+\theta$
- Constraint: $0 \leq \theta \leq \frac{\pi}{2}$ (see the picture!)
- $f^{\prime}(\theta)=-2 \sin (\theta)+1=0 \Leftrightarrow \sin (\theta)=\frac{1}{2} \Leftrightarrow \theta=\frac{\pi}{3}$
- $f(0)=2, f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}$ and $f\left(\frac{\pi}{3}\right)=2 \times \frac{\sqrt{3}}{2}+\frac{\pi}{3}=\sqrt{3}+\frac{\pi}{3}$.

By the closed interval method, $\theta=\frac{\pi}{2}$ is an absolute minimizer.

- Therefore, she should just walk! (which makes sense because she walks much faster than she rows!)

Solution to 4.7.70:

- We want to minimize $L_{1}+L_{2}$
- $\cos (\theta)=\frac{L_{1}}{9}$, so $L_{1}=\frac{9}{\cos (\theta)}, \sin (\theta)=\frac{L_{2}}{6}$, so $L_{2}=\frac{6}{\sin (\theta)}$
- Let $f(\theta)=\frac{9}{\cos (\theta)}+\frac{6}{\sin (\theta)}$
- Constraint: $0<\theta<\frac{\pi}{2}$ (Notice that at 0 and $\frac{\pi}{2}$, we can't carry the pipe horizontally around the corner; it would break at that corner)
- $f^{\prime}(\theta)=\frac{9 \sin (\theta)}{\cos ^{2}(\theta)}+\frac{-6 \cos (\theta)}{\sin ^{2}(\theta)}=\frac{9 \sin ^{3}(\theta)-6 \cos ^{3}(\theta)}{\cos ^{2}(\theta) \sin ^{2}(\theta)}=0$
$\Leftrightarrow 9 \sin ^{3}(\theta)-6 \cos ^{3}(\theta)=0 \Leftrightarrow\left(\frac{\sin (\theta)}{\cos (\theta)}\right)^{3}=\frac{6}{9}=\frac{2}{3} \Leftrightarrow \tan ^{3}(\theta)=\frac{2}{3} \Leftrightarrow \theta=$ $\tan ^{-1}\left(\sqrt[3]{\frac{2}{3}}\right)$
- By FDTAEV, $\theta=\tan ^{-1}\left(\sqrt[3]{\frac{2}{3}}\right)$ is the absolute minimizer of f
- Answer: $\frac{9}{\cos (\theta)}+\frac{6}{\sin (\theta)}$, where $\theta=\tan ^{-1}\left(\sqrt[3]{\frac{2}{3}}\right)$ (if you want to, you can simplify this using the triangle method: $\frac{1}{\cos \left(\tan ^{-1}(x)\right)}=\sqrt{1+x^{2}}$ and $\frac{1}{\sin \left(\tan ^{-1}(x)\right)}=\frac{\sqrt{1+x^{2}}}{x}$, but I think this is enough torture for now :)

Solution to 4.9.76: Suppose the acceleration of the car is $a(t)=A$. Then $v(t)=A t+B$ and $s(t)=\frac{A}{2} t^{2}+B t+C$.

However, at $t=0$, the car is moving at $100 \mathrm{~km} / \mathrm{h}$, so $v(0)=100$, so $B=100$, hence $v(t)=A t+100$ and $s(t)=\frac{A}{2} t^{2}+100 t+C$.

Moreover, at $t=0$, the car is at its initial position 0 , so $s(0)=0$, so $C=0$, hence $s(t)=\frac{A}{2} t^{2}+100 t$

Now let t^{*} be the time needed to real the pile-up.
We want the car to have 0 velocity at t^{*}, hence $v\left(t^{*}\right)=0$, hence $A t^{*}+100=0$, so $A t^{*}=-100$

Moreover, we want $s\left(t^{*}\right)=80 \mathrm{~m}=0.08 \mathrm{~km}$, so $\frac{A}{2}\left(t^{*}\right)^{2}+100 t^{*}=0.08$, but using the fact that $A t^{*}=-100$, this just becomes: $\frac{-100 t^{*}}{2}+100 t^{*}=0.08$, so $50 t^{*}=0.08$, so $t^{*}=\frac{1}{625}$.

Therefore $A=-\frac{100}{t^{*}}=-100 \times 625=-62500 \mathrm{~km} / \mathrm{h}^{2}$, so the answer is $62500 \mathrm{~km} / \mathrm{h}^{2}$.

[^0]: Date: Friday, November 8th, 2013.

