Math 1A - So you think you can slant (asymptote)?

Peyam Ryan Tabrizian

Wednesday, March 23rd, 2011

In our magical journey of graphing functions, we encountered a completely new concept, that of a slant asymptote. Let's first define such a concept!

1 Definition of a slant asymptote

Definition. A line $y=a x+b$ is a slant asymptote to the graph of f at ∞ if

$$
\lim _{x \rightarrow \infty} f(x)-(a x+b)=0
$$

Similarly for $-\infty$
Definition. A line $y=a x+b$ is a slant asymptote to the graph of f at $-\infty$ if

$$
\lim _{x \rightarrow-\infty} f(x)-(a x+b)=0
$$

If you don't like a and b, just think of $2 x+3$, or $x-1$, or whatever your two favorite numbers are!

This concept is easier understood with a picture! (see next page)
1A/Handouts/Slant.png

Notice that, as $x \rightarrow \infty$, the graph of f 'approaches' the line $y=x-2$, so $y=x-1$ is a slant asymptote to the graph of f at ∞. Similarly, as $x \rightarrow-\infty$, the graph of f 'approaches' the line $y=-\frac{x}{2}+1$, so $y=-\frac{x}{2}+1$ is a slant asymptote to the graph of f at $-\infty$!

What's the point, really? Basically, we're saying that as x becomes very large, the graph of f looks very much like $y=x-1$, which tells us a great deal about the graph of f.

Also, note that the graph of f CAN cross its slant asymptote, and it CAN approach this asymptote from below! (the picture is a little bit misleading in this sense).

2 How can we show that a given line is a slant asymptote?

One sample problem would be the following:
Problem. Show that $y=x+2$ is a slant asymptote to the graph of $f(x)=\sqrt{x^{2}+4 x}$
This is the easiest problem you can get about this topic! First, you need to decide whether the above line is a slant asymptote at ∞ or $-\infty$, and this requires 2 seconds of thinking: Notice that $y=x+2$ goes to $-\infty$ as $x \rightarrow-\infty$, so it can't be a slant asymptote at $-\infty$ because f goes to ∞ as $x \rightarrow-\infty$! So, if $y=x+2$ is a slant
asymptote, then it must be a slant asymptote at ∞ !
Now the rest is easy, because we just need to show $\lim _{x \rightarrow \infty} \sqrt{x^{2}+4 x}-(x+2)=$ 0 . A calculation using 'conjugate forms' shows:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \sqrt{x^{2}+4 x}-(x+2) & =\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x}-(x+2)\right) \frac{\sqrt{x^{2}+4 x}+(x+2)}{\sqrt{x^{2}+4 x}+(x+2)} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}+4 x-(x+2)^{2}}{\sqrt{x^{2}+4 x}+(x+2)} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}+4 x-x^{2}-4 x-4}{\sqrt{x^{2}+4 x}+(x+2)} \\
& =\lim _{x \rightarrow \infty} \frac{-4}{\sqrt{x^{2}+4 x}+(x+2)} \\
& =0
\end{aligned}
$$

And so, we showed that $y=x+2$ is a slant asymptote to the graph of f at ∞. As an exercise, show that $y=-x-2$ is a slant asymptote to the graph of f at $-\infty$.

3 How can we find slant asymptotes?

There is a wonderful standard procedure to find slant asymptotes, and it is also useful to show that a graph cannot have a slant asymptote! It is based on the following fact:

Suppose $y=a x+b$ is a slant asymptote to f at ∞. Then:

$$
\lim _{x \rightarrow \infty} f(x)-(a x+b)=0
$$

Now, dividing both sides by x, we get:

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}-\frac{a x+b}{x}=0
$$

That is:

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}-a+\frac{b}{x}=0
$$

However, $\lim _{x \rightarrow \infty} \frac{b}{x}=0$, so we get:

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}-a=0
$$

That is:

$$
a=\lim _{x \rightarrow \infty} \frac{f(x)}{x}
$$

In other words, the slope of the slant asymptote is given by $a=\lim _{x \rightarrow \infty} \frac{f(x)}{x}$.
And once you found a, finding b (the y-intercept) is even easier, namely:

$$
b=\lim _{x \rightarrow \infty} f(x)-a x
$$

(you get this by adding b to both sides of the equality: $0=\lim _{x \rightarrow \infty} f(x)-(a x+$ b)).

And of course, the same thing is true for $-\infty$.
Now let's see this in action!
Problem. Find the slant asymptote to $f(x)=\sqrt{x^{2}+4 x}$ at ∞
This is the same problem as above, except that we're not given the equation of the slant asymptote! Here, we'll try to find it!

First let's find the slope a :

$$
\begin{aligned}
a & =\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+4 x}}{x} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{\left(x^{2}\right)\left(1+\frac{4}{x}\right)}}{x} \\
& =\lim _{x \rightarrow \infty} \frac{|x| \sqrt{1+\frac{4}{x}}}{x} \\
& =\lim _{x \rightarrow \infty} \frac{x \sqrt{1+\frac{4}{x}}}{x} \quad(\text { since } x>0) \\
& =\lim _{x \rightarrow \infty} \sqrt{1+\frac{4}{x}} \\
& =1
\end{aligned}
$$

And to find b, we get:

$$
\begin{aligned}
b & =\lim _{x \rightarrow \infty} \sqrt{x^{2}+4 x}-x \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}+4 x-x^{2}}{\sqrt{x^{2}+4 x}+x} \quad \text { (conjugate form) } \\
& =\lim _{x \rightarrow \infty} \frac{4 x}{\sqrt{x^{2}+4 x}+x} \\
& =\lim _{x \rightarrow \infty} \frac{4 x}{|x| \sqrt{1+\frac{4}{x}}+x} \\
& =\lim _{x \rightarrow \infty} \frac{4 x}{x \sqrt{1+\frac{4}{x}}+x} \\
& =\lim _{x \rightarrow \infty} \frac{4 x}{x\left(\sqrt{1+\frac{4}{x}}+1\right)} \\
& =\lim _{x \rightarrow \infty} \frac{4}{\sqrt{1+\frac{4}{x}}+1} \\
& =\frac{4}{2} \\
& =2
\end{aligned}
$$

Hence, the slant asymptote to f at ∞ is: $y=x+2$ (which is the same answer we found above!)

This procedure is also good to show a function cannot have a slant asymptote!
Problem. Show that $f(x)=x+\sqrt{x}$ does not have a slant asymptote at ∞
We'll do a proof by contradiction! Suppose f has a slant asymptote $y=a x+b$. Then we must have:

$$
a=\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty} \frac{x+\sqrt{x}}{x}=\lim _{x \rightarrow \infty} 1+\frac{1}{\sqrt{x}}=1
$$

So $y=x+b$.
And then, we get:

$$
b=\lim _{x \rightarrow \infty} f(x)-x=\lim _{x \rightarrow \infty} x+\sqrt{x}-x=\lim _{x \rightarrow \infty} \sqrt{x}=\infty
$$

Which is a contradiction (since b must be finite!).
Hence f cannot have a slant asymptote at ∞.

A couple of other useful remarks:

1. If you're given a function f that is the sum of a linear function and another function, i.e. $f(x)=g(x)+h(x)$, then try $g(x)$ as your guess. For example, if $f(x)=e^{x}-x=-x+e^{x}$, then try $y=-x$ as your slant asymptote. Again, beware whether it is an asymptote at $+\infty$ or at $-\infty$!!! Here, if you do the 'showing'-part, you'll notice that $+\infty$ won't work!
2. If you already found that there is a horizontal asymptote at ∞, there CANNOT be a slant asymptote at $+\infty$ as well, (because that would mean that the function is approaching 2 lines at the same time, which is nonsense)! This simplifies your search a little bit! HOWEVER, there may be a horizontal asymptote at ∞ AND a slant asymptote at $-\infty$, so beware of this case! And similarly for $-\infty$ (i.e. horizontal asymptote at $-\infty$ implies there cannot be a slant asymptote at $-\infty$!)
3. Periodic functions CANNOT have slant asymptotes!
