MATH 1A - SOLUTION TO 5.1.26

PEYAM RYAN TABRIZIAN

(a) We are given that the polygon is made out of n congruent triangles, so $A_{n}=n \cdot T$, where T is the area of each triangle. So all we need to find is T.

Here again, a picture tells a thousand words, so by drawing the picture of such a triangle, we can figure out its area:

1A/Polygon.png
Using the picture, you'll notice that:

$$
T=\frac{1}{2} \cdot A \cdot B=\frac{A}{2} B
$$

And we can divide the triangle into two right triangles, and hence use trigonometry to calculate $\frac{A}{2}$ and B ! Here, $\theta=\frac{2 \pi}{n}$, the central angle!

We get:

$$
\begin{aligned}
\cos \left(\frac{\theta}{2}\right) & =\frac{B}{r} \\
B & =r \cdot \cos \left(\frac{\theta}{2}\right)
\end{aligned}
$$

Date: Wednesday, November 17th, 2010.

$$
\begin{aligned}
\sin \left(\frac{\theta}{2}\right) & =\frac{\frac{A}{2}}{r} \\
\frac{A}{2} & =r \cdot \sin \left(\frac{\theta}{2}\right)
\end{aligned}
$$

And so, we get:
$T=\frac{A}{2} \cdot B=r \cdot \sin \left(\frac{\theta}{2}\right) \cdot r \cdot \cos \left(\frac{\theta}{2}\right)=r^{2} \cdot \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)=r^{2} \frac{1}{2} \sin \left(2 \cdot \frac{\theta}{2}\right)=\frac{1}{2} r^{2} \sin (\theta)=\frac{1}{2} r^{2} \sin \left(\frac{2 \pi}{n}\right)$
Here, we used the fact that, in general, $2 \sin (x) \cos (x)=\sin (2 x)$, so $\sin (x) \cos (x)=$ $\frac{1}{2} \sin (2 x)$.

And so, we have:

$$
A_{n}=n \cdot T=n \cdot \frac{1}{2} r^{2} \sin \left(\frac{2 \pi}{n}\right)=\frac{1}{2} n r^{2} \sin \left(\frac{2 \pi}{n}\right)
$$

(b) Actually, the hint tells us that we don't even have to use l'Hopital's rule, but rather the rule that:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

We have that:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} A_{n} & =\lim _{n \rightarrow \infty} \frac{1}{2} r^{2} n \sin \left(\frac{2 \pi}{n}\right) \\
& =\frac{1}{2} r^{2} \lim _{n \rightarrow \infty} n \sin \left(\frac{2 \pi}{n}\right) \\
& =\frac{1}{2} r^{2} \lim _{n \rightarrow \infty} \frac{\sin \left(\frac{2 \pi}{n}\right)}{\frac{1}{n}} \\
& =\frac{1}{2} r^{2} \lim _{n \rightarrow \infty} \frac{2 \pi \sin \left(\frac{2 \pi}{n}\right)}{\frac{2 \pi}{n}} \\
& =2 \pi \cdot \frac{1}{2} r^{2} \lim _{n \rightarrow \infty} \frac{\sin \left(\frac{2 \pi}{n}\right)}{\frac{2 \pi}{n}} \\
& =\pi r^{2} \lim _{x \rightarrow 0} \frac{\sin (x)}{x} \\
& =\pi r^{2}(1) \\
& =\pi r^{2}
\end{aligned} \quad\left(x=\frac{2 \pi}{n}\right)
$$

The basic idea is that, if we have an indeterminate form of the form " $0 \cdot \infty$ ", we rewrite ∞ as $\frac{1}{0}$, or we rewrite 0 as $\frac{1}{\infty}$. Here, for example, we wrote $n=\frac{1}{\frac{1}{n}}$ in order to apply the hint in the problem!

And hooray, you just proved that the formula for the area of a circle of radius r is πr^{2}. But actually, you didn't, because trigonometry, which you used in (a), relies heavily on this formula!

