MATH 1A - SOLUTION TO 3.9.44

PEYAM RYAN TABRIZIAN

As is usual for related rates problems, let's draw a picture:

1A/Clock.png

Let θ be the angle between the hour hand and the minute hand. Now, what we want to calculate is $D^{\prime}(\theta)$, where the ${ }^{\prime}$ indicates differentiation with respect to the time variable.

How can we relate $D(\theta)$ with what we know? This is easy! We know an angle θ and the lengths of $A B$ and $A C$ in the picture, so let's just use the law of cosines. We get:

$$
B C^{2}=A C^{2}+A B^{2}-2 \cdot A C \cdot A B \cdot \cos (\theta)
$$

That is:
Date: Thursday, October 14th, 2010.

$$
D(\theta)^{2}=8^{2}+4^{2}-2 \cdot 8 \cdot 4 \cdot \cos (\theta)
$$

Which you can write as:

$$
D(\theta)^{2}=80-64 \cos (\theta)
$$

Now differentiate with respect to time!
We get:

$$
2 D(\theta) D^{\prime}(\theta)=64 \sin (\theta) \frac{d \theta}{d t}
$$

And now, all we need to do is to plug in everything we know!
First of all $\theta=\frac{2 \pi}{12}=\frac{\pi}{6}$ (basically, the whole circle corresponds to 2π, and so $\frac{1}{12}$ of the circle corresponds to $\frac{2 \pi}{12}$).

In particular, $\sin (\theta)=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$.
Now, for $d(\theta)$, we use the law of cosines again, this time with the value $\theta=\frac{\pi}{6}$:

$$
D\left(\frac{\pi}{6}\right)^{2}=80-64 \cdot \cos \left(\frac{p i}{6}\right)=80-64 \frac{\sqrt{3}}{2}=80-32 \sqrt{3}
$$

So, taking square roots, we get $d\left(\frac{\pi}{6}\right)=\sqrt{80-32 \sqrt{3}}=4 \sqrt{5-2 \sqrt{3}} \mathrm{~mm}$.
Finally, we need to compute $\frac{D \bar{\theta}}{d t}$. But think about it! In 12 hours, $\theta=2 \pi$, so the speed of θ should be $\frac{2 \pi}{12}=\frac{\pi}{6}=-\frac{11 \pi}{6} \mathrm{rad} / \mathrm{h}$ (notice that θ is decreasing, so we wanted a negative answer!)

Finally, we have all our information to get our final answer:

$$
\begin{aligned}
2 D(\theta) D^{\prime}(\theta) & =64 \sin (\theta) \frac{D \theta}{d t} \\
2 \cdot(4 \sqrt{5-2 \sqrt{3}}) \cdot D^{\prime}\left(\frac{\pi}{6}\right) & =64 \cdot \frac{1}{2} \cdot \frac{-11 \pi}{6} \\
2 \cdot(4 \sqrt{5-2 \sqrt{3}}) \cdot D^{\prime}\left(\frac{\pi}{6}\right) & =32 \cdot \frac{-11 \pi}{6} \\
D^{\prime}\left(\frac{\pi}{6}\right) & =16 \cdot \frac{\frac{-11 \pi}{6}}{4 \sqrt{5-2 \sqrt{3}}} \\
D^{\prime}\left(\frac{\pi}{6}\right) & =4 \cdot \frac{\frac{-11 \pi}{6}}{\sqrt{5-2 \sqrt{3}}} \\
D^{\prime}\left(\frac{\pi}{6}\right) & =-\frac{22 \pi}{3 \sqrt{5-2 \sqrt{3}}} \\
D^{\prime}\left(\frac{\pi}{6}\right) & \approx-18.55 m m / h
\end{aligned}
$$

So our final answer is $D^{\prime}\left(\frac{\pi}{6}\right)=-\frac{22 \pi}{3 \sqrt{5-2 \sqrt{3}}} \mathrm{~mm} / \mathrm{h} \approx-18.55 \mathrm{~mm} / \mathrm{h}$

