Final Exam — Review — Problems

Peyam Ryan Tabrizian

Wednesday, May 8, 2013

Note: In all the problems below, \(V \) is a finite-dimensional inner-product space (except in problems 1 and 7(a)-(d), where \(V \) is just a finite-dimensional vector space)

Problem 1:
Let \(U \) and \(W \) be subspaces of a vector space \(V \), with \(\dim(U) \geq \dim(W) \). Show that there exists \(T \in \mathcal{L}(V) \) such that \(T(U) = W \).

Problem 2:
Suppose \(T \in \mathcal{L}(V) \) satisfies \(\langle T(e_i), e_j \rangle = 0 \) if \(i \neq j \) and 1 otherwise (for all \(i \) and \(j \)). Calculate \(M(T) \).

Problem 3:
Let \(T \) and \(S \) be self-adjoint operators on \(V \) such that \(TS = ST \). Show that there exists an orthonormal basis of \(V \) whose elements are eigenvectors of both \(S \) and \(T \) (that is, \(S \) and \(T \) are simultaneously diagonalizable)

Problem 4:
In the following \(V^* \) denotes the set of all linear functionals on \(V \), and given \(v \), \(\phi_v \in V^* \) denotes the functional \(\phi_v(u) = \langle u, v \rangle \).

Define \(\Phi : V \rightarrow V^* \) by: \(\Phi(v) = \phi_v \)

Show that \(\Phi \) is an isomorphism of vector spaces!

\(^1\)that is, the set of linear transformations from \(V \) to \(\mathbb{F} \)
Problem 5:
Let U be a subspace of V, and P be the orthogonal projection on U. Let $J : U \to V$ denote the inclusion map, that is, $J(u) = u$. Show that $J^* = P$.

Problem 6:
Let V be an inner-product space and W be any vector space, and $T \in \mathcal{L}(V, W)$. Given $w \in W$, define $S_w = \{v \in V \mid T(v) = w\}$ (the set of vectors in V that map to W). Show that the smallest element \hat{w} of S_w (if it exists) is orthogonal to any vector $\text{Nul}(T)$.

Problem 7: TRUE/FALSE EXTRAVAGANZA!!!

(a) If U, W, Z are subspaces of V, and $\dim(V) = \dim(U) + \dim(W) + \dim(Z)$, then $V = U \oplus W \oplus Z$.

(b) If W is a fixed subspace of V, then $\{T \in \mathcal{L}(V) \mid W$ is a T-invariant subspace of $V\}$ is a subspace of $\mathcal{L}(V)$.

(c) If $T, S \in \mathcal{L}(V)$, and S is invertible, then T and STS^{-1} have the same eigenvalues, including multiplicities.

(d) If $V = \mathbb{R}^2$ and $T^2 = T$, then there is a basis of V consisting of eigenvectors of T.

(e) If $T = S^*S$ for $S \in \mathcal{L}(V)$, then all the eigenvalues of T are nonnegative.

(f) If $\mathbb{F} = \mathbb{C}$, and T is normal and nilpotent, then $T = 0$.

(g) If $\mathbb{F} = \mathbb{C}$, and $\|Tx\| = \|x\|$ for all x, then there is a basis of V consisting of eigenvectors of T.

\footnote{By this we mean that if u is any other vector in S_w, then $\|\hat{w}\| \leq \|u\|$}