Math 110 Homework 2 Solutions

February 6, 2013

Chapter 1:

8.) Prove that the intersection of an arbitrary collection of subspaces of V is a subspace of V.

Solution: Let $\left(U_{i}\right)_{i \in I}$ be an arbitrary collection of subspaces of V (I is just an index set used to keep track of the different subspaces). We define the intersection of all elements of the collection as follows:

$$
\bigcap_{i \in I} U_{i}=\left\{x: x \in U_{i} \text { for all } i \in I\right\} .
$$

We now prove it is a subspace of V.

First, we note that as each U_{i} is a subspace, we have $0 \in U_{i}$ for all $i \in I$. Therefore, $0 \in \bigcap_{i \in I} U_{i}$.

Let x and y be in $\bigcap_{i \in I} U_{i}$, i.e. x and y are in U_{i} for each $i \in I$. As each U_{i} is a subspace, they are all closed under addition. Therefore, $x+y \in U_{i}$ for every $i \in I$. This implies $x+y \in \bigcap_{i \in I} U_{i}$ so $\bigcap_{i \in I} U_{i}$ is closed under addition.

Let $c \in \mathbb{F}$ and $x \in \bigcap_{i \in I} U_{i}$. Then as $x \in U_{i}$ for each i and the U_{i} are all subspaces, we have $c \cdot x \in U_{i}$ for all i as each U_{i} is closed under scalar multiplication. Therefore $c \cdot x \in \bigcap_{i \in I} U_{i}$ so $\bigcap_{i \in I} U_{i}$ is closed under multiplication and is thus a subset of V.
14.) Suppose U is the subspace of $\mathcal{P}(\mathbb{F})$ consisting of all polynomials p of the form

$$
p(z)=a z^{2}+b z^{5} .
$$

Find a subspace, W of $\mathcal{P}(\mathbb{F})$ such that $\mathcal{P}(\mathbb{F})=U \oplus W$.
Solution: Set $W=\left\{p \in \mathcal{P}(\mathbb{F}): p(z)=\sum_{k=0}^{n} a_{k} z^{k}\right.$ and $\left.a_{2}=0=a_{5}\right\}$. We claim W is a subspace of $\mathcal{P}(\mathbb{F})$ and $\mathcal{P}(\mathbb{F})=U \oplus W$.

To see that W is a subspace, we note that the zero polynomial has all coefficients zero, in particular a_{2} and a_{5} so $0 \in W$. Given p and $q \in W$, there exists and n such that $p(z)=\sum_{k=0}^{n} a_{k} z^{k}$ and $q(z)=\sum_{k=0}^{n} b_{k} z^{k}$ with a_{2}, a_{5}, b_{2}, and b_{5} are all zero. The polynomial $p+q$ is $(p+q)(z)=\sum_{k=0}^{n}\left(a_{k}+b_{k}\right) z^{k}$. We see that $a_{2}+b_{2}=0+0=0$ and $a_{5}+b_{5}=0+0=0$ which implies $p+q \in W$ so W is closed under addition. Finally, if $c \in \mathbb{F}$ and p is as in the previous sentence, then $c p(z)=\sum_{k=0}^{n} c a_{k} z^{k}$ and $c a_{2}=c \cdot 0=0$ and $c a_{5}=c \cdot 0=0$ so W is closed under scalar multiplication and is a subspace.

To show that $\mathcal{P}=U \oplus W$, we invoke proposition 1.9. This means we have to show $\mathcal{P}(\mathbb{F})=U+W$ and $U \cap W=\{0\}$. Let $f \in \mathcal{P}(\mathbb{F})$. Then for some m, we write

$$
f(z)=\sum_{k=0}^{m} c_{k} z^{k}=\left(c_{2} z^{2}+c_{5} z^{5}\right)+\left(\sum_{k=0}^{1} c_{k} z^{k}+\sum_{k=3}^{4} c_{k} z^{k}+\sum_{k=6}^{m} c_{k} z^{k}\right) \in U+W
$$

which shows $U+W=\mathcal{P}(\mathbb{F})$. Finally, if $g(z)=\sum_{k=0}^{j} d_{k} z^{k}$ is in $U \cap W$, then $d_{k}=0$ for all $k \neq 2$ or 5 since $g \in U$, and $d_{2}=0=d_{5}$ since $g \in W$. Therefore, $d_{k}=0$ for all k and we conclude that $U \cap W=\{0\}$. This means $\mathcal{P}(\mathbb{F})=U \oplus W$ as desired.
15.) Prove or give a counterexample: if U_{1}, U_{2}, W are subspaces of V such that

$$
V=U_{1} \oplus W \text { and } V=U_{2}+W
$$

then $U_{1}=U_{2}$.
Solution: This is false. For an example, we take $V=\mathbb{F}^{2}, U_{1}=\{(x, 0): x \in \mathbb{F}\}$, $U_{2}=\{(z, z): z \in \mathbb{F}\}$ and $W=\{(0, y): y \in \mathbb{F}\}$. From the textbook, these are all subspaces of V. We first note that $V=U_{1} \oplus W$. Indeed, if $v=\left(a_{1}, a_{2}\right) \in U_{1} \cap W$, then $a_{1}=0$ since $v \in W$ and $a_{2}=0$ since $v \in U_{1}$. Therefore, $U_{1} \cap W=\{0\}$. Furthermore, any vector $(x, y) \in \mathbb{F}^{2}$ can be written as $(x, 0)+(0, y) \in U_{1}+W$ so that $U_{1}+W=V$. Therefore $V=U_{1} \oplus W$ by proposition 1.9.

We also claim $V=U_{2} \oplus W$. Let $v=\left(a_{1}, a_{2}\right) \in U_{2} \oplus W$. Then $a_{1}=0$ since $v \in W$ and $a_{1}=a_{2}$ since $v \in U_{2}$. This implies $a_{2}=0$ hence $v=0$ and $U_{2} \cap W=\{0\}$. Also, note that any vector, $(x, y) \in W$ can be written as

$$
(x, y)=(x, x)+(0, y-x) \in U_{2}+W
$$

so it follows that $U_{2}+W=V$. Therefore, $V=U_{2} \oplus W$ by proposition 1.9. Clearly, $U_{2} \neq U_{1}$ so we are finished.

Chapter 2:
1.) Prove that if $\left(v_{1}, \cdots, v_{n}\right)$ spans V, then so does the list

$$
\left(v_{1}-v_{2}, v_{2}-v_{3}, \cdots, v_{n-1}-v_{n}, v_{n}\right)
$$

obtained by subtracting from each vector (except the last one) the following vector.
Solution: Let $v \in V$. Since $\left(v_{1}, \cdots, v_{n}\right)$ spans V, we know that there exist scalars $a_{1}, \cdots, a_{n} \in \mathbb{F}$ such that

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=v
$$

We seek coefficients b_{i} such that:
$b_{1}\left(v_{1}-v_{2}\right)+b_{2}\left(v_{2}-v_{3}\right)+\cdots+b_{n-1}\left(v_{n-1}-v_{n}\right)+b_{n} v_{n}=v=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}$.
Using the distributive property, the left hand side can be rewritten as

$$
b_{1} v_{1}+\left(b_{2}-b_{1}\right) v_{2}+\cdots+\left(b_{n-1}-b_{n-2}\right) v_{n-1}+\left(b_{n}-b_{n-1}\right) v_{n}
$$

so comparing this with the expression in the a_{i} gives us the following equations:

$$
\begin{aligned}
b_{1} & =a_{1} \\
b_{k}-b_{k-1} & =a_{k} \text { for } 2 \leq k \leq n .
\end{aligned}
$$

We claim that $b_{k}=\sum_{i=1}^{k} a_{i}$ for all k between 1 and n. Indeed, the result is clearly true for b_{1}. We now assume $2 \leq j<n$ and $b_{j}=\sum_{i=1}^{j} a_{i}$. Then:

$$
b_{j+1}=b_{j}+a_{j+1}=\sum_{i=1}^{j} a_{i}+a_{j+1}=\sum_{i=1}^{j+1} a_{i}
$$

so the formula is proved by induction. This proves that:

$$
v=a_{1}\left(v_{1}-v_{2}\right)+\left(a_{1}+a_{2}\right)\left(v_{2}-v_{3}\right)+\cdots+\left(\sum_{k=1}^{n} a_{k}\right) v_{n} .
$$

so $v \in \operatorname{span}\left(v_{1}, \cdots, v_{n}\right)$. Therefore, the list $\left(v_{1}-v_{2}, v_{2}-v_{3}, \cdots, v_{n-1}-v_{n}, v_{n}\right)$ spans V.
2.) Prove that if $\left(v_{1}, \cdots, v_{n}\right)$ is linearly independent in V, then so is the list

$$
\left(v_{1}-v_{2}, v_{2}-v_{3}, \cdots, v_{n-1}-v_{n}, v_{n}\right)
$$

obtained by subtracting from each vector (except the last one) the following vector.
Solution: Consider the following equation:

$$
a_{1}\left(v_{1}-v_{2}\right)+a_{2}\left(v_{2}-v_{3}\right)+\cdots+a_{n} v_{n}=0
$$

for each $a_{i} \in \mathbb{F}$. To show linear independence, we must show that each coefficient in the above equation must be zero. The equation can be rewritten as

$$
a_{1} v_{1}+\left(a_{2}-a_{1}\right) v_{2}+\left(a_{3}-a_{2}\right) v_{3}+\cdots\left(a_{n}-a_{n-1}\right) v_{n}=0 .
$$

Since $\left(v_{1}, \cdots, v_{k}\right)$ are linearly independent, we see that

$$
\begin{aligned}
a_{1} & =0 \\
a_{k}-a_{k-1} & =0 \text { for } 2 \leq k \leq n
\end{aligned}
$$

We claim that this implies that $a_{k}=0$ for k between 1 and n. We again proceed by induction. Clearly the result is true for $k=1$. Assume that the result is true for some j such that $2 \leq j<n$. Then $a_{j+1}-a_{j}=0$, implying $a_{j+1}=a_{j}=0$, completing the proof. Therefore the list $\left(v_{1}-v_{2}, v_{2}-v_{3}, \cdots, v_{n-1}-v_{n}, v_{n}\right)$ is linearly independent.
3.) Suppose $\left(v_{1}, \ldots, v_{n}\right)$ is linearly independent in V, and $w \in V$. Prove that if $\left(v_{1}+w, \cdots, v_{n}+w\right)$ is linearly dependent, then $w \in \operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$.

Solution: Since $\left(v_{1}+w, \cdots, v_{n}+w\right)$ is linearly dependent, we can find scalars a_{1}, \cdots, a_{n} not all 0 such that

$$
a_{1}\left(v_{1}+w\right)+\cdots+a_{n}\left(v_{n}+w\right)=0 .
$$

Rearranging this equation, we get:

$$
a_{1} v_{1}+\cdots+a_{n} v_{n}=-\left(a_{1}+\cdots+a_{n}\right) w .
$$

We claim that $a_{1}+\cdots+a_{n} \neq 0$. Indeed if this were not the case, then we would have $a_{1} v_{1}+\cdots+a_{n} v_{n}=-0 w=0$. Since the a_{i} are not all zero, this contradicts the linear independence of $\left\{v_{1}, \cdots, v_{n}\right\}$. Therefore, we can divide by $\left(a_{1}+\cdots+a_{n}\right)$, producing:

$$
w=-\frac{a_{1}}{a_{1}+\cdots+a_{n}} v_{1}-\cdots-\frac{a_{n}}{a_{1}+\cdots+a_{n}} v_{n}
$$

implying $w \in \operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$.

