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Chapter 1:

8.) Prove that the intersection of an arbitrary collection of subspaces of V is a sub-
space of V .

Solution: Let (Ui)i∈I be an arbitrary collection of subspaces of V (I is just an index
set used to keep track of the different subspaces). We define the intersection of all
elements of the collection as follows:⋂

i∈I

Ui = {x : x ∈ Ui for all i ∈ I}.

We now prove it is a subspace of V .

First, we note that as each Ui is a subspace, we have 0 ∈ Ui for all i ∈ I. Therefore,
0 ∈

⋂
i∈I Ui.

Let x and y be in
⋂

i∈I Ui, i.e. x and y are in Ui for each i ∈ I. As each Ui is a
subspace, they are all closed under addition. Therefore, x + y ∈ Ui for every i ∈ I.
This implies x + y ∈

⋂
i∈I Ui so

⋂
i∈I Ui is closed under addition.

Let c ∈ F and x ∈
⋂

i∈I Ui. Then as x ∈ Ui for each i and the Ui are all subspaces,
we have c · x ∈ Ui for all i as each Ui is closed under scalar multiplication. Therefore
c · x ∈

⋂
i∈I Ui so

⋂
i∈I Ui is closed under multiplication and is thus a subset of V .

14.) Suppose U is the subspace of P(F) consisting of all polynomials p of the form

p(z) = az2 + bz5.

Find a subspace, W of P(F) such that P(F) = U ⊕W .

Solution: Set W = {p ∈ P(F) : p(z) =
∑n

k=0 akz
k and a2 = 0 = a5}. We claim W is

a subspace of P(F) and P(F) = U ⊕W .
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To see that W is a subspace, we note that the zero polynomial has all coefficients
zero, in particular a2 and a5 so 0 ∈ W . Given p and q ∈ W , there exists and n such
that p(z) =

∑n
k=0 akz

k and q(z) =
∑n

k=0 bkz
k with a2, a5, b2, and b5 are all zero. The

polynomial p + q is (p + q)(z) =
∑n

k=0(ak + bk)zk. We see that a2 + b2 = 0 + 0 = 0
and a5 + b5 = 0 + 0 = 0 which implies p + q ∈ W so W is closed under addition.
Finally, if c ∈ F and p is as in the previous sentence, then cp(z) =

∑n
k=0 cakz

k and
ca2 = c · 0 = 0 and ca5 = c · 0 = 0 so W is closed under scalar multiplication and is a
subspace.

To show that P = U ⊕W , we invoke proposition 1.9. This means we have to show
P(F) = U + W and U ∩W = {0}. Let f ∈ P(F). Then for some m, we write

f(z) =
m∑
k=0

ckz
k = (c2z

2 + c5z
5) +

(
1∑

k=0

ckz
k +

4∑
k=3

ckz
k +

m∑
k=6

ckz
k

)
∈ U + W

which shows U + W = P(F). Finally, if g(z) =
∑j

k=0 dkz
k is in U ∩W , then dk = 0

for all k 6= 2 or 5 since g ∈ U , and d2 = 0 = d5 since g ∈ W . Therefore, dk = 0 for all
k and we conclude that U ∩W = {0}. This means P(F) = U ⊕W as desired.

15.) Prove or give a counterexample: if U1, U2, W are subspaces of V such that

V = U1 ⊕W and V = U2 + W

then U1 = U2.

Solution: This is false. For an example, we take V = F2, U1 = {(x, 0) : x ∈ F},
U2 = {(z, z) : z ∈ F} and W = {(0, y) : y ∈ F}. From the textbook, these are all
subspaces of V . We first note that V = U1⊕W . Indeed, if v = (a1, a2) ∈ U1∩W , then
a1 = 0 since v ∈ W and a2 = 0 since v ∈ U1. Therefore, U1 ∩W = {0}. Furthermore,
any vector (x, y) ∈ F2 can be written as (x, 0) + (0, y) ∈ U1 +W so that U1 +W = V .
Therefore V = U1 ⊕W by proposition 1.9.

We also claim V = U2 ⊕W . Let v = (a1, a2) ∈ U2 ⊕W . Then a1 = 0 since v ∈ W
and a1 = a2 since v ∈ U2. This implies a2 = 0 hence v = 0 and U2 ∩W = {0}. Also,
note that any vector, (x, y) ∈ W can be written as

(x, y) = (x, x) + (0, y − x) ∈ U2 + W

so it follows that U2 + W = V . Therefore, V = U2 ⊕W by proposition 1.9. Clearly,
U2 6= U1 so we are finished.

Chapter 2:



1.) Prove that if (v1, · · · , vn) spans V , then so does the list

(v1 − v2, v2 − v3, · · · , vn−1 − vn, vn)

obtained by subtracting from each vector (except the last one) the following vector.

Solution: Let v ∈ V . Since (v1, · · · , vn) spans V , we know that there exist scalars
a1, · · · , an ∈ F such that

a1v1 + a2v2 + · · ·+ anvn = v.

We seek coefficients bi such that:

b1(v1− v2) + b2(v2− v3) + · · ·+ bn−1(vn−1− vn) + bnvn = v = a1v1 + a2v2 + · · ·+ anvn.

Using the distributive property, the left hand side can be rewritten as

b1v1 + (b2 − b1)v2 + · · ·+ (bn−1 − bn−2)vn−1 + (bn − bn−1)vn

so comparing this with the expression in the ai gives us the following equations:

b1 = a1

bk − bk−1 = ak for 2 ≤ k ≤ n.

We claim that bk =
∑k

i=1 ai for all k between 1 and n. Indeed, the result is clearly

true for b1. We now assume 2 ≤ j < n and bj =
∑j

i=1 ai. Then:

bj+1 = bj + aj+1 =

j∑
i=1

ai + aj+1 =

j+1∑
i=1

ai

so the formula is proved by induction. This proves that:

v = a1(v1 − v2) + (a1 + a2)(v2 − v3) + · · ·+

(
n∑

k=1

ak

)
vn.

so v ∈ span(v1, · · · , vn). Therefore, the list (v1−v2, v2−v3, · · · , vn−1−vn, vn) spans V .

2.) Prove that if (v1, · · · , vn) is linearly independent in V , then so is the list

(v1 − v2, v2 − v3, · · · , vn−1 − vn, vn)

obtained by subtracting from each vector (except the last one) the following vector.

Solution: Consider the following equation:

a1(v1 − v2) + a2(v2 − v3) + · · ·+ anvn = 0



for each ai ∈ F. To show linear independence, we must show that each coefficient in
the above equation must be zero. The equation can be rewritten as

a1v1 + (a2 − a1)v2 + (a3 − a2)v3 + · · · (an − an−1)vn = 0.

Since (v1, · · · , vk) are linearly independent, we see that

a1 = 0

ak − ak−1 = 0 for 2 ≤ k ≤ n

We claim that this implies that ak = 0 for k between 1 and n. We again proceed by
induction. Clearly the result is true for k = 1. Assume that the result is true for
some j such that 2 ≤ j < n. Then aj+1− aj = 0, implying aj+1 = aj = 0, completing
the proof. Therefore the list (v1−v2, v2−v3, · · · , vn−1−vn, vn) is linearly independent.

3.) Suppose (v1, ..., vn) is linearly independent in V , and w ∈ V . Prove that if
(v1 + w, · · · , vn + w) is linearly dependent, then w ∈ span(v1, ..., vn).

Solution: Since (v1 + w, · · · , vn + w) is linearly dependent, we can find scalars
a1, · · · , an not all 0 such that

a1(v1 + w) + · · ·+ an(vn + w) = 0.

Rearranging this equation, we get:

a1v1 + · · ·+ anvn = −(a1 + · · ·+ an)w.

We claim that a1 + · · ·+an 6= 0. Indeed if this were not the case, then we would have
a1v1 + · · ·+ anvn = −0w = 0. Since the ai are not all zero, this contradicts the linear
independence of {v1, · · · , vn}. Therefore, we can divide by (a1 + · · ·+ an), producing:

w = − a1
a1 + · · ·+ an

v1 − · · · −
an

a1 + · · ·+ an
vn,

implying w ∈ span(v1, ..., vn).


