Physical Brownian Motion in Magnetic Field as Rough Path

The work of Peter Friz, Paul Gassiat, and Terry Lyons[1], presented by Kevin O’Neill

Department of Mathematics
UC Berkeley

September 20, 2016
Brownian Motion

Brownian motion—The movements that a massless particle takes under the impact of random forces (think speck of dust floating in water).

Source: https://quanttutorials.files.wordpress.com/2013/05/bm-sample-path.png
Brownian motion - the movements that a massless particle takes under the impact of random forces (think speck of dust floating in water)
Brownian motion - the movements that a massless particle takes under the impact of random forces (think speck of dust floating in water)

Source: https://quanttutorials.files.wordpress.com/2013/05/bm-sample-path.png
Mathematically speaking, a Brownian motion W is a real-valued stochastic process $(W_t : t \geq 0)$ such that
Mathematically speaking, a Brownian motion W is a real-valued stochastic process $(W_t : t \geq 0)$ such that

(i) $W_0(\omega) = 0$ for all $\omega \in \Omega$.

Mathematically speaking, a Brownian motion W is a real-valued stochastic process $(W_t : t \geq 0)$ such that

(i) $W_0(\omega) = 0$ for all $\omega \in \Omega$.

(ii) $t \mapsto W_t(\omega)$ is a continuous function of t for all ω.

An n-dimensional Brownian motion is an \mathbb{R}^n-valued stochastic process each of whose components is an independent Brownian motion.
Mathematically speaking, a Brownian motion W is a real-valued stochastic process $(W_t : t \geq 0)$ such that

(i) $W_0(\omega) = 0$ for all $\omega \in \Omega$.

(ii) $t \mapsto W_t(\omega)$ is a continuous function of t for all ω.

(iii) for every $t, h \geq 0$, $W_{t+h} - W_t$ is independent of $(W_u : 0 \leq u \leq t)$ and has normal distribution with mean 0 and variance h.
Mathematically speaking, a Brownian motion W is a real-valued stochastic process $(W_t : t \geq 0)$ such that

(i) $W_0(\omega) = 0$ for all $\omega \in \Omega$.

(ii) $t \mapsto W_t(\omega)$ is a continuous function of t for all ω.

(iii) for every $t, h \geq 0$, $W_{t+h} - W_t$ is independent of $(W_u : 0 \leq u \leq t)$ and has normal distribution with mean 0 and variance h.

An n-dimensional Brownian motion is an \mathbb{R}^n-valued stochastic process each of whose components is an independent Brownian motion.
Brownian motion describes the behavior of massless particles. *Physical Brownian motion* describes the behavior of particles with nonzero mass (actual particles).
Brownian motion describes the behavior of massless particles. *Physical Brownian motion* describes the behavior of particles with nonzero mass (actual particles). As Stochastic differential equations,

$$A \dot{x} = \dot{W},$$

(1)

where A is a diagonal matrix with positive entries along the diagonal.
Brownian motion describes the behavior of massless particles. *Physical Brownian motion* describes the behavior of particles with nonzero mass (actual particles). As Stochastic differential equations,

\[(\text{Brownian motion}) \quad A\dot{x} = \dot{W}, \quad (1)\]

where \(A\) is a diagonal matrix with positive entries along the diagonal, and

\[(\text{Physical Brownian motion}) \quad m\ddot{x} = -A\dot{x} + \dot{W}. \quad (2)\]
Brownian motion describes the behavior of massless particles. *Physical Brownian motion* describes the behavior of particles with nonzero mass (actual particles). As Stochastic differential equations,

\[
(A \text{ Brownian motion}) \quad A\dot{x} = \dot{W}, \quad (1)
\]

where \(A \) is a diagonal matrix with positive entries along the diagonal, and

\[
(\text{Physical Brownian motion}) \quad m\ddot{x} = -A\dot{x} + \dot{W}. \quad (2)
\]

Q: What happens to physical Brownian motion as \(m \to 0 \)?
Question: Why care about (non-physical) Brownian motion when actual particles have mass?
Question: Why care about (non-physical) Brownian motion when actual particles have mass?

Answer: Because it’s still a good approximation for particles with low mass. It is the limit of physical Brownian motion as $m \to 0$.
A particle with charge q moving in a constant magnetic field \mathbb{B} experiences a force

$$F_{\text{Lorentz}} = q\dot{x} \times \mathbb{B}$$
Introduce Magnetic Field

A particle with charge q moving in a constant magnetic field \mathbb{B} experiences a force

$$F_{\text{Lorentz}} = q\dot{x} \times \mathbb{B} = qB\dot{x}$$

for some anti-symmetric matrix B.
A particle with charge q moving in a constant magnetic field B experiences a force

$$F_{\text{Lorentz}} = q\dot{x} \times B = qB\dot{x}$$

for some anti-symmetric matrix B. Now,

$$m\ddot{x} = -A\dot{x} + qB\dot{x} + \dot{W}$$
$$m\ddot{x} = -M\dot{x} + \dot{W},$$

where all eigenvalues of M have strictly positive real part.
We rewrite our second-order DE

\[m\ddot{x} = -M\dot{x} + \dot{W} \]
We rewrite our second-order DE

\[m\ddot{x} = -M\dot{x} + \dot{W} \]

as a system of first-order DEs

\[dX = \frac{1}{m} Pdt \]

\[dP = -\frac{1}{m} MPdt + dW \]

where we think of \(P \) as momentum.
Q: Now that we’ve added a magnetic field, what happens as $m \to 0$?
Q: Now that we’ve added a magnetic field, what happens as $m \to 0$?
As $m \to 0$, physical Brownian motion under a magnetic field converges to Brownian motion under a magnetic field...
Q: Now that we’ve added a magnetic field, what happens as $m \to 0$?
As $m \to 0$, physical Brownian motion under a magnetic field converges to Brownian motion under a magnetic field...

...plus an extra area term (in the rough path sense).
Motivation

In general, we have controlled ODEs of the form

$$\dot{Y}_t = f_0(Y_t) + f(Y_t)\dot{X}_t.$$
In general, we have controlled ODEs of the form

$$\dot{Y}_t = f_0(Y_t) + f(Y_t)\dot{X}_t.$$

Solutions are limits as $h \to 0$ of

$$Y_{i+1} = Y_i + hf_0(Y_i) + hf(Y_i)(X_{t+1} - X_t).$$
In general, we have controlled ODEs of the form

$$\dot{Y}_t = f_0(Y_t) + f(Y_t) \dot{X}_t.$$

Solutions are limits as $h \to 0$ of

$$Y_{i+1} = Y_i + hf_0(Y_i) + hf(Y_i)(X_{t+1} - X_t).$$

Furthermore, when X is smooth, Y is continuous as a function of X (a stability result).
If X is Brownian motion, we may take the limit as $h \to 0$ of

$$Y_{i+1} = Y_i + hf_0(Y_i) + \sqrt{hf}(Y_i)\xi_{i+1},$$

where (ξ_i) are i.i.d. standard Gaussian random variables.
Motivation II

If X is Brownian motion, we may take the limit as $h \to 0$ of

$$Y_{i+1} = Y_i + hf_0(Y_i) + \sqrt{hf(Y_i)} \xi_{i+1},$$

where (ξ_i) are i.i.d. standard Gaussian random variables. Y is not continuous as a function of W, i.e., stability is lost. The problem is that W is a.s. not α-Hölder continuous for $\alpha = 1/2$.
Definition

A rough path is a continuous map $X : [0, T] \to V$ along with a continuous "second-order process" $\mathbf{X} : [0, T]^2 \to V \otimes V$.
Rough Paths

Definition

A rough path is a continuous map $X : [0, T] \to V$ along with a continuous "second-order process" $\mathbb{X} : [0, T]^2 \to V \otimes V$ such that

$$\mathbb{X}_{s,t} - \mathbb{X}_{u,t} - \mathbb{X}_{s,u} = X_{s,u} \otimes X_{u,t}.$$

The terms $\mathbb{X}_{s,t}$ are "inspired by" the terms $\int_s^t X_r \otimes dX_r$ which appear in second-order Euler processes. Generally, one may not deduce $\mathbb{X}_{s,t}$ from $X_{s,t}$. Chen's relation still holds when $X_{s,t}$ is replaced by $X_{s,t} + F_t - F_s$. When X_t is α-Hölder continuous for $\alpha > 1/2$, we may take Young's integrals for $X_{s,t}$, but otherwise, no canonical choice exists.
Rough Paths

Definition

A rough path is a continuous map $X : [0, T] \rightarrow V$ along with a continuous "second-order process" $\mathcal{X} : [0, T]^2 \rightarrow V \otimes V$ such that

$$\mathcal{X}_{s,t} - \mathcal{X}_{u,t} - \mathcal{X}_{s,u} = X_{s,u} \otimes X_{u,t}.$$

The terms $\mathcal{X}_{s,t}$ are "inspired by" the terms $\int_s^t X_{s,r} \otimes dX_r$ which appear in second-order Euler processes.
Rough Paths

Definition

A rough path is a continuous map $X : [0, T] \to V$ along with a continuous "second-order process" $\mathbb{X} : [0, T]^2 \to V \otimes V$ such that

$$\mathbb{X}_{s,t} - \mathbb{X}_{u,t} - \mathbb{X}_{s,u} = X_{s,u} \otimes X_{u,t}.$$

- The terms $\mathbb{X}_{s,t}$ are "inspired by" the terms $\int_s^t X_{s,r} \otimes dX_r$ which appear in second-order Euler processes.
- Generally, one may not deduce \mathbb{X} from X.
Rough Paths

Definition

A rough path is a continuous map \(X : [0, T] \rightarrow V \) along with a continuous "second-order process" \(\bar{X} : [0, T]^2 \rightarrow V \otimes V \) such that

\[
\bar{X}_{s,t} - \bar{X}_{u,t} - \bar{X}_{s,u} = X_{s,u} \otimes X_{u,t}.
\]

- The terms \(\bar{X}_{s,t} \) are "inspired by" the terms \(\int_s^t X_{s,r} \otimes dX_r \) which appear in second-order Euler processes.
- Generally, one may not deduce \(\bar{X} \) from \(X \).
- Chen’s relation still holds when \(\bar{X}_{s,t} \) is replaced by \(\bar{X}_{s,t} + F_t - F_s \).
Definition

A rough path is a continuous map $X : [0, T] \to V$ along with a continuous "second-order process" $\mathbb{X} : [0, T]^2 \to V \otimes V$ such that

$$\mathbb{X}_{s, t} - \mathbb{X}_{u, t} - \mathbb{X}_{s, u} = X_{s, u} \otimes X_{u, t}.$$

- The terms $\mathbb{X}_{s, t}$ are "inspired by" the terms $\int_s^t X_{s, r} \otimes dX_r$ which appear in second-order Euler processes.
- Generally, one may not deduce \mathbb{X} from X.
- Chen's relation still holds when $\mathbb{X}_{s, t}$ is replaced by $\mathbb{X}_{s, t} + F_t - F_s$.
- When X_t is α-Hölder continuous for $\alpha > 1/2$, we may take Young's integrals for $\mathbb{X}_{s, t}$, but otherwise, no canonical choice exists.
Rough Paths II

Definition

For $\alpha \in (1/3, 1/2]$ and rough paths X, Y, define the α-Hölder rough path metric

$$\rho_{\alpha}(X, Y) := \sup_{s \neq t \in [0, T]} \frac{|X_{s,t} - Y_{s,t}|}{|t - s|^{\alpha}} + \sup_{s \neq t \in [0, T]} \frac{|X_{s,t} - Y_{s,t}|}{|t - s|^{2\alpha}}.$$

Denote the set of rough paths X with $\rho_{\alpha}(X, 0) < \infty$ as $C^\alpha([0, T])$.

Brownian motion is α-Hölder continuous for $\alpha < 1/2$ but not for $\alpha = 1/2$ a.s.
Definition

For $\alpha \in (1/3, 1/2]$ and rough paths X, Y, define the α-Hölder rough path metric

$$
\rho_\alpha(X, Y) := \sup_{s \neq t \in [0, T]} \frac{|X_{s,t} - Y_{s,t}|}{|t - s|^\alpha} + \sup_{s \neq t \in [0, T]} \frac{|X_{s,t} - Y_{s,t}|}{|t - s|^{2\alpha}}.
$$

Denote the set of rough paths X with $\rho_\alpha(X, 0) < \infty$ as $\mathcal{C}_\alpha([0, T])$.

Brownian motion is α-Hölder continuous for $\alpha < 1/2$ but not for $\alpha = 1/2$ a.s.
While the Itô solution map $S : W \to Y$ is not continuous
Itô-Lyons Map

While the Itô solution map $S : \mathcal{W} \to Y$ is \textit{not} continuous, the Itô-Lyons map $\hat{S} : (\mathcal{W}, \mathcal{W}) \to Y$ is.
While the Itô solution map $S : W \to Y$ is *not* continuous, the Itô-Lyons map $\hat{S} : (W, \mathbb{W}) \to Y$ is.

$$W(\omega) \xrightarrow{\Psi} (W, \mathbb{W})(\omega) \xrightarrow{\hat{S}} Y(\omega),$$

where Ψ is measurable.
Brownian motion is not α-Hölder continuous for $\alpha = 1/2$ a.s. How do we know it is for $\alpha < 1/2$ a.s.?
Brownian motion is not α-Hölder continuous for $\alpha = 1/2$ a.s. How do we know it is for $\alpha < 1/2$ a.s.?

Theorem (Kolmogorov criterion)

Let $q \geq 1$, $\beta > 1/q$ and assume for all $s, t \in [0, 1]$ that

$$|X_{s,t}|_{L^q(\omega)} \leq C|t - s|^\beta. \quad (3)$$

Then, for all $\alpha \in [0, \beta - 1/q)$, there exists a random variable $K_\alpha(\omega) \in L^q(\omega)$ such that

$$|X_{s,t}| \leq K_\alpha(\omega)|t - s|^\alpha.$$
Brownian motion is not α-Hölder continuous for $\alpha = 1/2 \ a.s.$ How do we know it is for $\alpha < 1/2 \ a.s.$?

Theorem (Kolmogorov criterion)

Let $q \geq 1$, $\beta > 1/q$ and assume for all $s, t \in [0, 1]$ that

$$|X_{s,t}|_{L^q(\omega)} \leq C|t - s|^\beta. \quad (3)$$

Then, for all $\alpha \in [0, \beta - 1/q)$, there exists a random variable $K_\alpha(\omega) \in L^q(\omega)$ such that

$$|X_{s,t}| \leq K_\alpha(\omega)|t - s|^\alpha.$$

For Brownian motion, equation (3) follows from the normal distribution of $W_{s,t}$.
Let $D_n = \{k2^{-n} : 0 \leq k \leq 2^n\} \subset (0, 1)$. Set

$$K_n = \sup_{t \in D_n} |X_{t, t+2^{-n}}|.$$
Proof of Kolmogorov Criterion

Let $D_n = \{k2^{-n} : 0 \leq k \leq 2^n\} \subset (0, 1)$. Set

$$K_n = \sup_{t \in D_n} |X_{t, t+2^{-n}}|.$$

By Equation (3), we have

$$E(K_n^q) \leq E \sum_{t \in D_n} |X_{t, t+2^{-n}}|^q \leq \frac{1}{|D_n|} C^q |D_n|^\beta q = C^q |D_n|^\beta q - 1.$$
Proof of Kolmogorov Criterion

Let $D_n = \{k2^{-n} : 0 \leq k \leq 2^n\} \subset (0, 1)$. Set

$$K_n = \sup_{t \in D_n} |X_{t,t+2^{-n}}|.$$

By Equation (3), we have

$$E(K_n^q) \leq E \sum_{t \in D_n} |X_{t,t+2^{-n}}|^q \leq \frac{1}{|D_n|} C^n |D_n|^\beta q = C^n |D_n|^\beta q - 1.$$

(Remember: $\beta > 1/q$.)
Proof of Kolmogorov Criterion II

Fix $s < t$ in $\bigcup_n D_n$ and choose m so $|D_{m+1}| < t - s \leq |D_m|$. (Other points will follow by continuity.)
Proof of Kolmogorov Criterion II

Fix \(s < t \) in \(\bigcup_n D_n \) and choose \(m \) so \(|D_{m+1}| < t - s \leq |D_m| \).
(Other points will follow by continuity.) Then,

\[
|X_{s,t}| \leq \sum_{i=0}^{n-1} |X_{\tau_i, \tau_{i+1}}| \leq 2 \sum_{n \geq m+1} K_n,
\]

where \(\tau_i \in \bigcup_n D_n \) and no three \(|\tau_{i+1} - \tau_i| \) are equal.
Proof of Kolmogorov Criterion II

Fix \(s < t \) in \(\cup_n D_n \) and choose \(m \) so \(|D_{m+1}| < t - s \leq |D_m| \). (Other points will follow by continuity.) Then,

\[
|X_{s,t}| \leq \sum_{i=0}^{n-1} |X_{\tau_i,\tau_{i+1}}| \leq 2 \sum_{n \geq m+1} K_n,
\]

where \(\tau_i \in \cup_n D_n \) and no three \(|\tau_{i+1} - \tau_i| \) are equal. Next, we see that

\[
\frac{|X_{s,t}|}{|t - s|^{\alpha}} \leq \sum_{n \geq m+1} \frac{2K_n}{|D_n|^{\alpha}} \leq K_{\alpha} := \sum_{n \geq 0} \frac{2K_n}{|D_n|^{\alpha}}.
\]
Proof of Kolmogorov Criterion II

Fix $s < t$ in $\cup_n D_n$ and choose m so $|D_{m+1}| < t - s \leq |D_m|$. (Other points will follow by continuity.) Then,

$$|X_{s,t}| \leq \sum_{i=0}^{n-1} |X_{\tau_i,\tau_{i+1}}| \leq 2 \sum_{n \geq m+1} K_n,$$

where $\tau_i \in \cup_n D_n$ and no three $|\tau_{i+1} - \tau_i|$ are equal. Next, we see that

$$\frac{|X_{s,t}|}{|t - s|^{\alpha}} \leq \sum_{n \geq m+1} \frac{2K_n}{|D_n|^{\alpha}} \leq K_{\alpha} := \sum_{n \geq 0} \frac{2K_n}{|D_n|^{\alpha}}.$$

This means $|X_{s,t}| \leq K_{\alpha}|t - s|^{\alpha}$, so we need only show $K_{\alpha} \in L^q$.
(Reminder: $K_\alpha := \sum_{n\geq 0} \frac{2K_n}{|D_n|^\alpha}$.)

Since $\alpha < \beta - \frac{1}{q}$ and $E(K_q^n) \leq C q |D_n|^{\beta q - 1}$, we have

$$||K_\alpha||_{L^q} \leq \sum_{n\geq 0} 2^{K_n} |D_n|^\alpha \cdot E(K_q^n)^{1/q} \leq \sum_{n\geq 0} 2^{K_n} |D_n|^\alpha |D_n|^{\beta - 1/q} < \infty.$$
Proof of Kolmogorov Criterion III

(Reminder: \(K_\alpha := \sum_{n \geq 0} \frac{2K_n}{|D_n|^\alpha} \).)

Since \(\alpha < \beta - 1/q \) and

\[
E(K_n^q) \leq C^q |D_n|^\beta q^{-1},
\]
Proof of Kolmogorov Criterion III

(Reminder: \(K_\alpha := \sum_{n \geq 0} \frac{2K_n}{|D_n|^{\alpha}} \).)

Since \(\alpha < \beta - 1/q \) and

\[\mathbb{E}(K_n^q) \leq C^q |D_n|^{\beta q - 1}, \]

we have

\[\|K_\alpha\|_{L^q} \leq \sum_{n \geq 0} \frac{2}{|D_n|^{\alpha}} \mathbb{E}(K_n^q)^{1/q} \leq \sum_{n \geq 0} \frac{2}{|D_n|^{\alpha}} |D_n|^{\beta - 1/q} < \infty. \]

Thus, \(K_\alpha \in L^q \), completing the proof.
Theorem (Kolmogorov criterion for rough paths)

Let \(q \geq 2, \beta > 1/q \) and assume for all \(s, t \in [0, 1] \) that

\[
|X_{s,t}|_{L^q(\omega)} \leq C|t - s|^\beta \quad \text{and} \quad |\bar{X}_{s,t}|_{L^{q/2}} \leq C|t - s|^{2\beta}.
\]

Then, for all \(\alpha \in [0, \beta - 1/q) \), there exist random variables \(K_\alpha \in L^q \) and \(\bar{K}_\alpha \in L^{q/2} \) such that

\[
|X_{s,t}| \leq K_\alpha(\omega)|t - s|^\alpha \quad \text{and} \quad |\bar{X}_{s,t}| \leq \bar{K}_\alpha(\omega)|t - s|^{2\alpha}.
\]
Kolmogorov Criterion for Rough Paths

Theorem (Kolmogorov criterion for rough paths)

Let \(q \geq 2, \beta > 1/q \) and assume for all \(s, t \in [0, 1] \) that

\[
|X_{s,t}|_{L^q(\omega)} \leq C|t - s|^\beta \quad \text{and} \quad |X_{s,t}|_{L^{q/2}} \leq C|t - s|^{2\beta}.
\]

Then, for all \(\alpha \in [0, \beta - 1/q) \), there exist random variables \(K_{\alpha} \in L^q \) and \(\underline{K}_{\alpha} \in L^{q/2} \) such that

\[
|X_{s,t}| \leq K_{\alpha}(\omega)|t - s|^\alpha \quad \text{and} \quad |X_{s,t}| \leq \underline{K}_{\alpha}(\omega)|t - s|^{2\alpha}.
\]

In particular, \((X, \underline{X}) \in C^\alpha \) a.s. whenever \(\beta - 1/q > 1/3 \) and \(\alpha \in (1/3, \beta - 1/q) \).
Theorem (Kolmogorov criterion for rough paths)

Let \(q \geq 2, \beta > 1/q \) and assume for all \(s, t \in [0, 1] \) that

\[
|X_{s,t}|_{L^q(\omega)} \leq C|t - s|^{\beta} \quad \text{and} \quad |\nabla X_{s,t}|_{L^{q/2}} \leq C|t - s|^{2\beta}.
\]

Then, for all \(\alpha \in [0, \beta - 1/q) \), there exist random variables \(K_\alpha \in L^q \) and \(\nabla K_\alpha \in L^{q/2} \) such that

\[
|X_{s,t}| \leq K_\alpha(\omega)|t - s|^{\alpha} \quad \text{and} \quad |\nabla X_{s,t}| \leq \nabla K_\alpha(\omega)|t - s|^{2\alpha}.
\]

In particular, \((X, \nabla X) \in C^\alpha \) a.s. whenever \(\beta - 1/q > 1/3 \) and \(\alpha \in (1/3, \beta - 1/q) \).

For Brownian motion, we may take \(q \to \infty \), so \((W, \nabla W) \in C^\alpha \) for all \(\alpha < 1/2 \).
Problem: How to choose W for Brownian rough path W?
Problem: How to choose W for Brownian rough path W?

Solution 1: Itô integration

\[W_{s,t}^{\text{Itô}} = \int_s^t W_{s,r} \otimes dW_r = \lim_{n \to \infty} \sum_{[t_{i-1}, t_i] \in D_n} W_{t_{i-1}} \otimes (W_{t_i} - W_{t_{i-1}}), \]

where D_n is a sequence of partitions with mesh going to 0.
Problem: How to choose \mathbb{W} for Brownian rough path W?

Solution 1: Itô integration

$$
\mathbb{W}_{s,t}^{\text{Itô}} = \int_s^t W_{s,r} \otimes dW_r = \lim_{n \to \infty} \sum_{[t_{i-1}, t_i] \in D_n} W_{t_{i-1}} \otimes (W_{t_i} - W_{t_{i-1}}),
$$

where D_n is a sequence of partitions with mesh going to 0.

Lemma

For any $\alpha \in (1/3, 1/2)$, $T > 0$, $W = (W, \mathbb{W}^{\text{Itô}}) \in C^\alpha([0, T])$ a.s.
Solution 2: Stratonovich integration
Solution 2: Stratonovich integration

We define

\[
W_{s,t}^{\text{Strat}} = \int_s^t W_{s,r} \otimes \circ dW_r
\]

\[
= \lim_{n \to \infty} \sum_{[t_{i-1}, t_i] \in D_n} \frac{W_{t_{i-1}} + W_{t_i}}{2} \otimes (W_{t_i} - W_{t_{i-1}}),
\]

where \(|D_n| \to 0\).
Solution 2: Stratonovich integration
We define

\[W_{s,t}^{\text{Strat}} = \int_{s}^{t} W_{s,r} \otimes \circ dW_{r} \]

\[= \lim_{n \to \infty} \sum_{[t_{i-1}, t_{i}] \in D_{n}} \frac{W_{t_{i-1}} + W_{t_{i}}}{2} \otimes (W_{t_{i}} - W_{t_{i-1}}), \]

where \(|D_{n}| \to 0 \). One may show

\[W_{s,t}^{\text{Strat}} = \int_{s}^{t} W_{s,r} \otimes \circ dW_{r} = W_{s,t}^{\text{Itô}} + \frac{1}{2} I(t - s) \]
Solution 2: Stratonovich integration

We define

\[\mathbb{W}_{s,t}^{\text{Strat}} = \int_s^t W_{s,r} \otimes \circ dW_r \]

\[= \lim_{n \to \infty} \sum_{[t_{i-1}, t_i] \in D_n} \frac{W_{t_{i-1}} + W_{t_i}}{2} \otimes (W_{t_i} - W_{t_{i-1}}), \]

where \(|D_n| \to 0 \). One may show

\[\mathbb{W}_{s,t}^{\text{Strat}} = \int_s^t W_{s,r} \otimes \circ dW_r = \mathbb{W}_{s,t}^{\text{Itô}} + \frac{1}{2} I(t - s) \]

Note: Only Stratonovich integration gives geometric rough paths.
Brownian motion is a.s. \emph{not} α-Hölder continuous for $\alpha = 1/2$ and there is no stability in the solution map.
Brownian motion as a.s. \(\not\alpha \)-Hölder continuous for \(\alpha = 1/2 \) and there is no stability in the solution map.

- We adjoin an "area" term to our paths, which is computed with either Itô or Stratonovich stochastic integration.
Brownian motion as a.s. not α-Hölder continuous for $\alpha = 1/2$ and there is no stability in the solution map.

- We adjoin an "area" term to our paths, which is computed with either Itô or Stratonovich stochastic integration.

- The resulting *enhanced Brownian motion* does lead to stability in the solution (Itô-Lyons) map.
Main Result

Theorem

Let M, m, X, P, W be as before.
Main Result

Theorem

Let M, m, X, P, W be as before. Define $\hat{W} = (W, \hat{W})$, where

$$\hat{W}_{s,t} = W_{s,t}^{\text{Strat}} + (t - s)\frac{1}{2}(MC - CM^*),$$

and $C = \int_0^\infty e^{-Ms}e^{-M^*s}ds$.
Main Result

Theorem

Let M, m, X, P, W be as before. Define $\hat{W} = (W, \hat{W})$, where

$$\hat{W}_{s,t} = W_{s,t}^{\text{Strat}} + (t - s)\frac{1}{2}(MC - CM^*),$$

and $C = \int_{0}^{\infty} e^{-Ms} e^{-M^*s} ds$. Then, as $m \to 0$, MX converges to \hat{W} in L^q and ρ_α for $q \geq 1$ and $\alpha \in (1/3, 1/2]$.

Main Result

Theorem

Let M, m, X, P, W be as before. Define $\hat{W} = (W, \hat{\hat{W}})$, where

$$\hat{\hat{W}}_{s,t} = W_{s,t}^{Strat} + \left(t - s\right)^{\frac{1}{2}} (MC - CM^*).$$

and $C = \int_0^\infty e^{-Ms} e^{-M^*s} ds$. Then, as $m \to 0$, MX converges to \hat{W} in L^q and ρ_α for $q \geq 1$ and $\alpha \in \left(\frac{1}{3}, \frac{1}{2}\right]$. More precisely,

$$\|\rho_\alpha(MX(\omega), \hat{W}(\omega))\|_{L^q(\omega)} \to 0.$$
Comments

- If the magnetic field is zero, then $B = 0$, so M is a diagonal (symmetric) matrix. Thus, $M = M^*$, $MC = CM^*$, and we have no extra area term in the limit.
Comments

- If the magnetic field is zero, then $B = 0$, so M is a diagonal (symmetric) matrix. Thus, $M = M^*$, $MC = CM^*$, and we have no extra area term in the limit.

- A similar result holds for Itô integration due to the relation $W_{s,t}^{\text{Strat}} = W_{s,t}^{\text{Itô}} + \frac{1}{2} I(t - s)$.
Proof Idea: Rescaling

Inspired by "Brownian scaling"

$$(W_{\lambda^2 t} : t \geq 0) \overset{D}{=} (\lambda W_t : t \geq 0)$$

let $m = \epsilon^2$ and $Y^\epsilon = P/\epsilon$ and solve

$$dY^\epsilon = -\epsilon^2 MY^\epsilon dt + \epsilon^{-1} dW$$

$$dX^\epsilon = \epsilon^{-1} Y^\epsilon dt.$$
Proof Idea: Rescaling

Inspired by "Brownian scaling"

\[(W_{\lambda^2 t} : t \geq 0) \overset{\mathcal{D}}{=} (\lambda W_t : t \geq 0)\]

let \(m = \epsilon^2\) and \(Y^\epsilon = P/\epsilon\) and solve

\[dY^\epsilon = -\epsilon^2 MY^\epsilon dt + \epsilon^{-1} dW\]

\[dX^\epsilon = \epsilon^{-1} Y^\epsilon dt.\]

Also, setting \(\tilde{B}_t = \epsilon B_{\epsilon^{-2} t}\),

\[d\tilde{Y} = -MY\tilde{Y} dt + d\tilde{B}, \quad d\tilde{X} = \tilde{Y} dt,\]

so \((Y^\epsilon_t, \epsilon^{-1} X^\epsilon_t) = (\tilde{Y}_{\epsilon^{-2} t}, \tilde{X}_{\epsilon^{-2} t})\).
Proof Idea: Convergence

To prove $\rho_\alpha(X^\epsilon, X) \to 0$, it suffices to show that $X^\epsilon \to X$ pointwise and

$$\sup_\epsilon \rho_\beta(X^\epsilon, 0) < \infty,$$

where $\beta > \alpha$. This idea is called interpolation.
Proof Idea: Convergence

To prove $\rho_\alpha(X^\epsilon, X) \to 0$, it suffices to show that $X^\epsilon \to X$ pointwise and

$$\sup_{\epsilon} \rho_\beta(X^\epsilon, 0) < \infty,$$

where $\beta > \alpha$. This idea is called interpolation. In our case, we want to show pointwise convergence and

$$\sup_{0 < \epsilon \leq 1} E[||MX^\epsilon||^q_\alpha] < \infty, \quad \sup_{0 < \epsilon \leq 1} E \left[\left\| \int MX^\epsilon \otimes d(MX^\epsilon) \right\|^{q}_{2\alpha} \right] < \infty.$$
Proof Idea: Convergence II

By the Kolmogorov criterion for rough paths, to show

\[
\sup_{0 < \epsilon \leq 1} E[\| MX^\epsilon \|_q] < \infty, \quad \sup_{0 < \epsilon \leq 1} E \left[\left\| \int MX^\epsilon \otimes d(MX^\epsilon) \right\|_2 \right] < \infty.
\]
Proof Idea: Convergence II

By the Kolmogorov criterion for rough paths, to show

$$\sup_{0<\epsilon \leq 1} \mathbb{E}[\| MX^\epsilon \|_\alpha^q] < \infty, \quad \sup_{0<\epsilon \leq 1} \mathbb{E} \left[\left\| \int MX^\epsilon \otimes d(MX^\epsilon) \right\|_{2\alpha}^q \right] < \infty.$$

it suffices to show

$$\sup_{0<\epsilon \leq 1} \mathbb{E}[|X^\epsilon_{s,t}|^q] \lesssim |t-s|^{q/2} \quad \sup_{0<\epsilon \leq 1} \mathbb{E} \left[\left\| \int_s^t X^\epsilon_s \otimes dX^\epsilon \right\|_q \right] \lesssim |t-s|^q.$$
Proof Idea: Convergence II

By the Kolmogorov criterion for rough paths, to show

\[
\sup_{0 < \epsilon \leq 1} E[||MX^\epsilon||_\alpha^q] < \infty, \quad \sup_{0 < \epsilon \leq 1} E \left[\left\| \int MX^\epsilon \otimes d(MX^\epsilon) \right\|_{2\alpha}^q \right] < \infty.
\]

it suffices to show

\[
\sup_{0 < \epsilon \leq 1} E[|X^{\epsilon}_{s,t}|^q] \lesssim |t - s|^{q/2}, \quad \sup_{0 < \epsilon \leq 1} E \left[\left\| \int_s^t X^\epsilon_s \otimes dX^\epsilon \right\|^q \right] \lesssim |t - s|^q.
\]

Since X is a Gaussian process, we may take $q = 2$.
Theorem

Let M, m, X, P, W be as before. Define $\hat{W} = (W, \hat{W})$, where

$$\hat{W}_{s,t} = W_{s,t}^{Strat} + (t - s) \frac{1}{2} (MC - CM^*),$$

and $C = \int_0^\infty e^{-Ms} e^{-M^*s} ds$. Then, as $m \to 0$, MX converges to \hat{W} in L^q and ρ_α for $q \geq 1$ and $\alpha \in (1/3, 1/2]$. More precisely,

$$\|\rho_\alpha (MX(\omega), \hat{W}(\omega))\|_{L^q(\omega)} \to 0.$$
Proof of Pointwise Convergence I

Making a substitution in our system,

\[dM^\epsilon = \epsilon^{-1} MY^\epsilon \, dt = dW - \epsilon dY^\epsilon, \]
Proof of Pointwise Convergence I

Making a substitution in our system,

\[dM^\varepsilon X = \varepsilon^{-1} M Y^\varepsilon dt \]
\[= dW - \varepsilon dY^\varepsilon, \]

so

\[M^\varepsilon X_t = W_t - \varepsilon Y^\varepsilon_{0,t}. \]
Proof of Pointwise Convergence I

Making a substitution in our system,

\[dMX^\epsilon = \epsilon^{-1} MY^\epsilon dt \]

\[= dW - \epsilon dY^\epsilon, \]

so

\[MX^\epsilon_t = W_t - \epsilon Y^\epsilon_{0,t}. \]

By assumptions on \(M \), \(\sup_{0 \leq t < \infty} \mathbb{E}|\tilde{Y}_t^2| < \infty \), so \(\epsilon \tilde{Y}_{-2t}^\epsilon = \epsilon Y_t^\epsilon \to 0 \) in \(L^2 \) and all \(L^q \) \((q < \infty)\) uniformly.
Proof of Pointwise Convergence I

Making a substitution in our system,

\[dM^\epsilon X = \epsilon^{-1} M Y^\epsilon \, dt \]
\[= dW - \epsilon dY^\epsilon, \]

so

\[M^\epsilon X_t = W_t - \epsilon Y_0^\epsilon. \]

By assumptions on \(M \), \(\sup_{0 \leq t < \infty} \mathbb{E} |\tilde{Y}_t^2| < \infty \), so
\[\epsilon \tilde{Y}_{\epsilon^{-2} t} = \epsilon Y_t^\epsilon \rightarrow 0 \text{ in } L^2 \text{ and all } L^q \ (q < \infty) \text{ uniformly}. \]

Letting \(\epsilon \rightarrow 0 \) gives \(M^\epsilon X \rightarrow W \) pointwise.
A stationary solution is one for which the distribution of the process (X, dW) is invariant under time shifts.
A stationary solution is one for which the distribution of the process \((X, dW)\) is invariant under time shifts. In our case,

\[
\tilde{Y}_{t}^{\text{stat}} = \int_{-\infty}^{t} e^{-M(t-s)} dW_s.
\]
A *stationary solution* is one for which the distribution of the process \((X, dW)\) is invariant under time shifts. In our case,

\[
\tilde{Y}_{t}^{\text{stat}} = \int_{-\infty}^{t} e^{-M(t-s)} dW_s.
\]

\(\tilde{Y}_{t}^{\text{stat}}\) has law \(\nu \sim \mathcal{N}(0, C)\), for

\[
C = \mathbb{E}(\tilde{Y}_{0}^{\text{stat}} \otimes \tilde{Y}_{0}^{\text{stat}}) = \int_{0}^{\infty} e^{-Ms} e^{-M^* s} ds.
\]
A stationary solution is one for which the distribution of the process \((X, dW)\) is invariant under time shifts. In our case,

\[
\tilde{Y}_{t}^{\text{stat}} = \int_{-\infty}^{t} e^{-M(t-s)} dW_s.
\]

\(\tilde{Y}_{t}^{\text{stat}}\) has law \(\nu \sim \mathcal{N}(0, C)\), for

\[
C = E(\tilde{Y}_{0}^{\text{stat}} \otimes \tilde{Y}_{0}^{\text{stat}}) = \int_{0}^{\infty} e^{-Ms} e^{-M^*s} ds.
\]

By the ergodic theorem

\[
\frac{1}{t} \int_{0}^{t} f(Y^\epsilon_t) dt \rightarrow \int f(y) \nu(dy)
\]

in \(L^q\) for test functions \(f\).
Proof of Pointwise Convergence III

\[
\int_0^t MX_s^\epsilon \otimes d(MX^\epsilon)_s = \int_0^t MX_s^\epsilon \otimes dW_s - \epsilon \int_0^t MX_s^\epsilon \otimes dY_s^\epsilon
\]
Proof of Pointwise Convergence III

\[\int_0^t MX_s^\varepsilon \otimes d(MX^\varepsilon)_s = \int_0^t MX_s^\varepsilon \otimes dW_s - \varepsilon \int_0^t MX_s^\varepsilon \otimes dY_s^\varepsilon \]

\[= \int_0^t MX_s^\varepsilon \otimes dW_s - MX_t^\varepsilon \otimes (\varepsilon Y_t^\varepsilon) + \varepsilon \int_0^t d(MX^\varepsilon)_s \otimes Y_s^\varepsilon \]
Proof of Pointwise Convergence III

\[
\int_0^t MX^\epsilon_s \otimes d(MX^\epsilon)_s = \int_0^t MX^\epsilon_s \otimes dW_s - \epsilon \int_0^t MX^\epsilon_s \otimes dY^\epsilon_s
\]

\[
= \int_0^t MX^\epsilon_s \otimes dW_s - MX^\epsilon_t \otimes (\epsilon Y^\epsilon_t) + \epsilon \int_0^t d(MX^\epsilon)_s \otimes Y^\epsilon_s
\]

\[
= \int_0^t MX^\epsilon_s \otimes dW_s - MX^\epsilon_t \otimes (\epsilon Y^\epsilon_t) + \int_0^t MY^\epsilon_s \otimes Y^\epsilon_s ds
\]
Proof of Pointwise Convergence III

\[
\int_0^t M X_s^\varepsilon \otimes d(M X^\varepsilon)_s = \int_0^t M X_s^\varepsilon \otimes dW_s - \varepsilon \int_0^t M X_s^\varepsilon \otimes dY_s^\varepsilon
\]

\[
= \int_0^t M X_s^\varepsilon \otimes dW_s - M X_t^\varepsilon \otimes (\varepsilon Y_t^\varepsilon) + \varepsilon \int_0^t d(M X^\varepsilon)_s \otimes Y_s^\varepsilon
\]

\[
= \int_0^t M X_s^\varepsilon \otimes dW_s - M X_t^\varepsilon \otimes (\varepsilon Y_t^\varepsilon) + \int_0^t M Y_s^\varepsilon \otimes Y_s^\varepsilon ds
\]

\[
\rightarrow \int_0^t W_s \otimes W_s - 0 + t \int M y \otimes y \nu(dy)
\]
Proof of Pointwise Convergence III

\[\int_0^t MX_s^\epsilon \otimes d(MX^\epsilon)_s = \int_0^t MX_s^\epsilon \otimes dW_s - \epsilon \int_0^t MX_s^\epsilon \otimes dY_s^\epsilon \]

\[= \int_0^t MX_s^\epsilon \otimes dW_s - MX_t^\epsilon \otimes (\epsilon Y_t^\epsilon) + \epsilon \int_0^t d(MX^\epsilon)_s \otimes Y_s^\epsilon \]

\[= \int_0^t MX_s^\epsilon \otimes dW_s - MX_t^\epsilon \otimes (\epsilon Y_t^\epsilon) + \int_0^t MY_s^\epsilon \otimes Y_s^\epsilon ds \]

\[\rightarrow \int_0^t W_s \otimes W_s - 0 + t \int My \otimes y \nu(dy) \]

\[= \int_0^t W_s \otimes dW_s + tMC \]
Proof of Pointwise Convergence III

\[
\int_0^t MX^\epsilon_s \otimes d(MX^\epsilon)_s = \int_0^t MX^\epsilon_s \otimes dW_s - \epsilon \int_0^t MX^\epsilon_s \otimes dY^\epsilon_s
\]

\[
= \int_0^t MX^\epsilon_s \otimes dW_s - MX^\epsilon_t \otimes (\epsilon Y^\epsilon_t) + \epsilon \int_0^t d(MX^\epsilon)_s \otimes Y^\epsilon_s
\]

\[
= \int_0^t MX^\epsilon_s \otimes dW_s - MX^\epsilon_t \otimes (\epsilon Y^\epsilon_t) + \int_0^t MY^\epsilon_s \otimes Y^\epsilon_s ds
\]

\[
\quad \quad \rightarrow \int_0^t W_s \otimes W_s - 0 + t \int My \otimes y\nu(dy)
\]

\[
= \int_0^t W_s \otimes dW_s + tMC
\]

\[
= W_{0,t} + t(MC - \frac{1}{2}I) = W_{0,t} + \frac{1}{2}(MC - CM^*)
\]
Last Remarks

- Details of uniform bounds follow from properties of M and probability.
Last Remarks

- Details of uniform bounds follow from properties of M and probability.
- One may obtain convergence at rate arbitrarily close to $1/2 - \alpha$.
Details of uniform bounds follow from properties of M and probability.

One may obtain convergence at rate arbitrarily close to $1/2 - \alpha$.

There is no additional area term when driving noise is α-Hölder continuous for $\alpha > 1/2$.
Thank you
