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On the logarithmic Riemann-Hilbert correspondence

Arthur Ogus

Abstract. We construct a classification of coherent sheaves with
an integrable log connection, or, more precisely, sheaves with an inte-
grable connection on a smooth log analytic space X over C. We do
this in three contexts: sheaves and connections which are equivariant
with respect to a torus action, germs of holomorphic connections, and
finally global log analytic spaces. In each case, we construct an equiv-
alence between the relevant category and a suitable combinatorial or
topological category. In the equivariant case, the objects of the target
category are graded modules endowed with a group action. We then
show that every germ of a holomorphic connection has a canonical
equivariant model. Global connections are classified by locally con-
stant sheaves of modules over a (varying) sheaf of graded rings on the
topological space Xlog. Each of these equivalences is compatible with
tensor product and cohomology.

Keywords and Phrases: De Rham cohomology, Log scheme

Contents

0 Introduction 2

1 An equivariant Riemann-Hilbert correspondence 7
1.1 Logarithmic and equivariant geometry . . . . . . . . . . . . . . 7
1.2 Equivariant differentials and connections . . . . . . . . . . . . . 11
1.3 Equivariant Higgs fields . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Equivariant Riemann-Hilbert . . . . . . . . . . . . . . . . . . . 20
1.5 The Jordan transform . . . . . . . . . . . . . . . . . . . . . . . 28

2 Formal and holomorphic germs 34
2.1 Exponents and the Logarithmic inertia group . . . . . . . . . . 34
2.2 Formal germs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Convergent germs . . . . . . . . . . . . . . . . . . . . . . . . . . 38



2 Arthur Ogus

3 Xlog and the global Riemann-Hilbert correspondence 46
3.1 Xlog and its universal covering . . . . . . . . . . . . . . . . . . 46
3.2 Clog

X and logarithmic local systems . . . . . . . . . . . . . . . . 49
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0 Introduction

Let X/C be a smooth proper scheme of finite type over the complex numbers
and let Xan be its associated complex analytic space. The classical Riemann-
Hilbert correspondence provides an equivalence between the category Lcoh(CX)
of locally constant sheaves of finite dimensional C-vector spaces V on Xan

and the category MICcoh(X/C) of coherent sheaves (E,∇) with integrable
connection on X/C. This correspondence is compatible with formation of
tensor products and with cohomology: if an object V of Lcoh(CX) corresponds
to an object (E,∇) of MICcoh(X/C), there is a canonical isomorphism

Hi(Xan, V ) ∼= Hi(X,E ⊗ Ω·X/C), (0.0.1)

where E ⊗ Ω·X/C is the De Rham complex of (E,∇).
When X is no longer assumed to be proper, such an equivalence and equation
(0.0.1) still hold, provided one restricts to connections with regular singularities
at infinity [3]. Among the many equivalent characterizations of this condition,
perhaps the most precise is the existence of a smooth compactification X of X
such that the complementX\X is a divisor Y with simple normal crossings and
such that (E,∇) prolongs to a locally free sheaf E endowed with a connection
with log poles ∇ : E → E ⊗ Ω1

X/C
(log Y ). In general there are many possible

choices of E, some of which have the property that the natural map

Hi(X,E ⊗ Ω·
X/C

(log Y ))→ Hi(X,E ⊗ Ω·X/C) (0.0.2)

is an isomorphism.
In some situations, it is more natural to view the compactification data (X,E)
as the fundamental object of study. To embody this point of view in the
notation, let (X,Y ) denote a pair consisting of a smooth scheme X over C
together with a reduced divisor with strict normal crossings Y on X, and let
X∗ := X \Y . Write OX for OX , and let MX denote the sheaf of sections of OX
which become units on X∗. Then MX is a (multiplicative) submonoid of OX
containing O∗X , and the natural map of sheaves of monoids αX : MX → OX
defines a “log structure”[6] on X. The datum of (X,Y ) is in fact equivalent
to the datum of the “log scheme” X := (X,αX). The quotient monoid sheaf
MX := MX/O∗X is exactly the sheaf of anti-effective divisors with support
in Y . This sheaf is locally constant on a stratification of X and has finitely
generated stalks, making it an essentially combinatorial object, which encodes
in a convenient way much of the combinatorics of the geometry of (X,Y ). For
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example, one can easily control the geometry of those closed subschemes of
X which are defined by coherent sheaves of ideals K in the sheaf of monoids
MX . Such a scheme Z inherits a log structure αZ : MZ → OZ from that of
X, and the sheaf of ideals K defines a sheaf of ideals KZ in MZ which is
annihilated by αZ . If one adds this extra datum to the package, one obtains
an idealized log scheme (Z,αZ ,KZ). Many of the techniques of logarithmic de
Rham cohomology work as well for Z as they do forX, a phenomenon explained
by the fact that (Z,αZ ,KZ) is smooth over C in the category of idealized log
schemes. Conversely, any fine saturated idealized log schemeX which is smooth
over C (in the sense of Grothendieck’s general notion of smoothness) is, locally
in the étale topology, isomorphic to the idealized log scheme associated to
the quotient monoid algebra C[P ] by an ideal K ⊆ P , where P is a finitely
generated, integral, and saturated monoid.
In [7], Kato and Nakayama construct, for any log scheme X of finite type over
C, a commutative diagram of ringed topological spaces

X∗
an

jlog- Xlog

@
@

@
@

@

j

R
Xan

τ

?

The morphism τ is surjective and proper and can be regarded as a relative
compactification of the open immersion X∗

an. We show in (3.1.2) that, if X is
smooth, X∗

an and Xlog have the same local homotopy type. Since τ is proper,
it is much easier to work with than the open immersion j. The construction of
Xlog also works in the idealized case. Here X∗

an can be empty, hence useless,
while its avatar Xlog remains. These facts justify the use of the space Xlog as
a substitute for X∗

an as the habitat for log topology.
Let X/C be a smooth, fine, and saturated idealized log analytic space, let
Ω1
X/C be the sheaf of log Kahler differentials, and let MICcoh(X/C) denote

the category of coherent sheaves E on X equipped with an integrable (log)
connection ∇ : E → E ⊗ Ω1

X/C. One of the main results of [7] is a Riemann-
Hilbert correspondence for a subcategory MICnilp(X/C) of MICcoh(X/C).
This consists of objects (E,∇) which, locally on X, admit a filtration whose
associated graded object “has no poles.” (In the classical case divisor with nor-
mal crossings case, such an object corresponds to the “canonical extension” of
a connection with regular singular points and nilpotent residue map [3, II,5.2].)
Kato and Nakayama establish a natural equivalence between MICnilp(X/C)
and a category Lunip(Xlog) of locally constant sheaves of C-modules on Xlog

with unipotent monodromy relative to τ . Note that if (E,∇) is an object of
MICnilp(X/C), then E is locally free, but that this is not true for a general
(E,∇) in MICcoh(X/C).
Our goal in this paper is to classify the category MICcoh(X/C) of all coherent
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sheaves on X, with no restriction on E or its monodromy, in terms of suitable
topological objects on Xlog. These will be certain sheaves of C-vector spaces
plus some extra data to keep track of the choice of coherent extension. The
extra data we need involve the exponents of the connection. These can be
thought of in the following way. At a point x of X, one can associate to a
module with connection (E,∇) its residue at x. This is a family of commuting
endomorphisms of E(x) parameterized by TM,x := Hom(M

gp

X,x,C); it gives
E(x) the structure of a module over the symmetric algebra of TM,x. The sup-
port of this module is then a finite subset of the maximal spectrum of S·TM,x,
which is just C⊗Mgp

X,x. The exponents of the connection are the negatives of
these eigenvalues; they are all zero for objects of MICnilp(X/C). Let Λ denote
the pullback of the sheaf C ⊗Mgp

X to Xlog, regarded as a sheaf of MX -sets
induced from the negative of the usual inclusion MX → C ⊗MX . The map
MX → Λ sending p to −1 ⊗ p endows the pullback Clog

X of C[MX ]/KX to
Xlog with the structure of a Λ-graded algebra. It then makes sense to speak of
sheaves of Λ-graded (or indexed) Clog

X -modules. In §3, we describe a category
Lcoh(C

log
X ) of “coherent” sheaves of Λ-graded Clog

X -modules and prove the
following theorem:

Theorem Let X/C be a smooth fine, and saturated idealized log ana-
lytic space over the complex numbers. There is an equivalence of tensor
categories:

V : MICcoh(X/C) - Lcoh(C
log
X )

compatible with pullback via morphisms X ′ → X.

As in [7], the equivalence can be expressed with the aid of a sheaf of rings
ÕlogX on Xlog which simultaneously possesses the structure of a Λ-graded Clog

X -
module and an exterior differential:

d : ÕlogX → Ω̃1,log
X/C := ÕlogX ⊗τ−1OX

τ−1Ω1
X/C,

whose kernel is exactly Clog
X . If (E,∇) is an object of MICcoh(X/C), Ẽ :=

ÕlogX ⊗τ−1OX
τ−1E inherits a “connection”

∇̃ : Ẽ → Ẽ ⊗Õlog
X

Ω̃1,log
X/C,

and V(E,∇) is the Λ-graded Clog
X -module Ẽ∇̃. Conversely, if V is an object of

Lcoh(C
log
X ), then Ṽ := ÕlogX ⊗Clog

X
V inherits a graded connection

∇̃ := d⊗ id : Ṽ → Ṽ ⊗Õlog
X

Ω̃1,log
X/C.

Pushing forward by τ and taking the degree zero parts, one obtains an OX -
module which we denote by τΛ

∗ V and which inherits a (logarithmic) connection
∇; this gives a quasi-inverse to the functor (E,∇) 7→ V(E,∇).
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The equivalence provided by the theorem is also compatible with cohomology.
A Poincaré lemma asserts that the map:

V → E ⊗ Ω̃·,logX/C

from V to the De Rham complex of τ−1E ⊗ ÕlogX is a quasi-isomorphism. An
analogous topological calculation asserts that the map

E ⊗ Ω·X/C → RτΛ
∗ (τ−1E ⊗ Ω̃·,logX/C)

is a quasi-isomorphism, where RτΛ
∗ means the degree zero part of Rτ∗. One

can conclude that the natural maps

Hi(X,E ⊗ Ω·X/C)→ Hi(Xlog, E ⊗ Ω̃·,logX/C,0)← Hi(Xlog, V0)

are isomorphisms. Note that in the middle and on the right, we take only the
part of degree zero; this reflects the well-known fact that in general, logarithmic
De Rham cohomology does not calculate the cohomology on the complement
of the log divisor without further conditions on the exponents [3, II, 3.13]. The
grading structure on the topological side obviates the unpleasant choice of a
section of the map C→ C/Z which is sometimes made in the classical theory
[3, 5.4]; it has the advantage of making our correspondence compatible with
tensor products.
The question of classifying coherent sheaves with integrable logarithmic con-
nection is nontrivial even locally. A partial treatment in the case of a divisor
with normal crossings is due to Deligne and briefly explained in an appendix
to [4]. The discussion there is limited to the case of torsion free sheaves and
is expressed in terms of Zr-filtered local systems (V, F·) of C-vector spaces. In
our coordinate-free formalism, M

gp

X replaces Zr, and the filtered local system
(V, F·) is replaced by its graded Rees-module ⊕mFmV . Because some readers
may be primarily concerned with the local problem, and/or may not appreci-
ate logarithmic geometry, we discuss the local Riemann-Hilbert correspondence
first, in which the logarithmic techniques reduce to toroidal methods which may
be more familiar. We shall in fact describe this correspondence in two ways:
one in terms of certain normalized representations of a “logarithmic fundamen-
tal group,” and one in terms of equivariant nilpotent Higgs modules. Then the
proof of the global theorem stated above amounts to formulating and verifying
enough compatibilities so that one can reduce to the local case.
The paper has three sections, dealing with the Riemann-Hilbert correspondence
in the equivariant, local, and global settings, respectively. The first section
discusses homogeneous connections on affine toric varieties. Essentially, these
are modules with integrable connection which are equivariant with respect to
the torus action. These are easy to classify, for example in terms of equivariant
Higgs modules. Once this is done, it is quite easy to describe an equivariant
Riemann-Hilbert correspondence for such modules. It takes some more care to
arrange the correspondence in a way that will be compatible with the global
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formulation we need later. The next section is devoted to the local Riemann-
Hilbert correspondence. The main point is to show that the category of analytic
germs of connections at the vertex of an affine toric variety is equivalent to the
category of coherent equivariant connections (and hence also to the category of
equivariant Higgs modules). There are two key ingredients: first is the study
of connections on modules of finite length (using Jordan normal form) and, by
passing to the limit, of formal germs. These results are reminiscent of Deligne’s
philosophy which associates a log connection on the tangent space at a point
to a germ of a connection at the point. Ahmed Abbes has pointed out the
similarity between this construction and the technique of “decompletion” used
by Fontaine in an analogous p-adic situation [5]. The second is a convergence
theorem which shows that the formal completion functor is an equivalence on
germs. Since our analytic spaces are only log smooth and our sheaves are not
necessarily locally free, such a theorem is not standard. Instead of trying a
dévissage technique to reduce to the classical case, we prove convergence from
scratch, using direct estimates of the growth of terms of formal power series
indexed by a monoid. In the last section, we globalize the Riemann-Hilbert
correspondence by defining ÕlogX and showing that it agrees, in a suitable sense,
with the equivariant constructions in the first section. To illustrate the power
of our somewhat elaborate main theorem, we show how it immediately implies
a logarithmic version (3.4.9) of Deligne’s comparison theorem [3, II, 3.13]. Our
version says that the map (0.0.2) is an isomorphism provided that, at each
x ∈ X, the intersection of the set of exponents of E (viewed as a subset of
C ⊗MX,x) with M

gp

X,x lies in MX,x. (In fact our result is slightly stronger,
as well more general, than Deligne’s original version.) We also explain how it
immediately implies the existence of a logarithmic version of the Kashiwara-
Malgrange V-filtration and of Deligne’s meromorphic to analytic comparison
theorem.
Since this paper seems long enough in its current state, we have not touched
upon several obvious problems, which we expect present varying degrees of
difficulty. These include a notion of regular singular points for modules with
connection on a log scheme, and especially the functoriality of the Riemann-
Hilbert correspondence with respect to direct images. We leave completely
untouched moduli problems of log connections, referring to work by N. Nitsure
in [9] and [10] on this subject.
The proofs given in the admirably short [7] use a dévissage argument, along
with resolution of toric singularities, to reduce to the classical case of a divisor
with normal crossings and a reference to [3]. Our point of view is that the
monoidal models rendered natural by the log point of view are so convenient
that it is natural and easy to give direct proofs, including proofs of the basic
convergence results in the analytic setting. Thus our treatment is logically
independent of [7] and even [3]. (Of course, these sources were fundamental
inspirations.)
I would like to thank Hélène Esnault for pointing out the existence of Deligne’s
classification in the appendix to [4] and for her encouragement in this attempt
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to follow up on it. Acknowledgments are also due to Toshirharu Matsubara and
Maurizio Cailotto, whose preliminary manuscripts on log connections were very
helpful. I would also like to thank Ahmed Abbes for the interest he has shown
in this work and the hospitality he provided at the University of Paris (Epinay-
Villetaneuse), where I was able to carry out some important rethinking of the
presentation. I am especially grateful to the referee for his meticulous work
which revealed over two hundred errors and/or ambiguities in the first version
of this manuscript. Finally, it is a pleasure and honor to be able to dedicate
this work to Kazuya Kato, whose work on the foundations and applications of
log geometry has been such an inspiration.

1 An equivariant Riemann-Hilbert correspondence

1.1 Logarithmic and equivariant geometry

Smooth log schemes are locally modeled on affine monoid schemes, and the
resulting toric geometry is a powerful tool in their analysis. We shall review the
basic setup and techniques of affine monoid schemes (affine toric varieties) and
then describe an equivariant Riemann-Hilbert correspondence for such schemes.
This will be the main computational tool in our proof of the local and global
correspondences in the next sections.
We start working over a commutative ring R, which later will become the field
of complex numbers. All our monoids will be commutative unless otherwise
stated. A monoid P is said to be toric if it is finitely generated, integral, and
saturated and in addition P gp is torsion free. If P is a monoid, we let R[P ]
denote the monoid algebra of P over R, and write e(p) or ep for the element
of R[P ] corresponding to an element p of P . If K is an ideal of P , we write
R[K] for the ideal of R[P ] generated by the elements of K and R[P,K] for the
quotient R[P ]/R[K]. By an idealized monoid we mean a pair (P,K), where
K is an ideal in a monoid P . Sometimes we simply write P for an idealized
monoid (Q,K) and R[P ] for R[Q,K].
We use the terminology of log geometry from, for example, [6]. Thus a log
scheme is a scheme X, together with a sheaf of commutative monoids MX on
Xét and a morphism of sheaves of monoids αX from MX to the multiplicative
monoid OX which induces an isomorphism α−1

X (O∗X) → O∗X . Then α induces
an isomorphism from the sheaf of units M∗

X of MX to O∗X ; we denote by λX
the inverse of this isomorphism and by MX the quotient of MX by O∗X . All
our log schemes will be coherent, fine, and saturated; for the definitions and
basic properties of these notions, we refer again to [6]. An idealized log scheme
is a log scheme with a sheaf of ideals KX ⊆MX such that αX(k) = 0 for every
local section k of KX . A sheaf of ideals KX of MX is said to be coherent if it
is locally generated by a finite number of sections, and we shall always assume
this is the case. Morphisms of log schemes and idealized log schemes are defined
in the obvious way. A morphism f : X → Y of fs idealized log schemes is strict
if the induced map f−1MY → MX is an isomorphism, and it is ideally strict
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if the morphism f−1KY → KX is also an isomorphism.
We let AP denote the log scheme Spec(P → R[P ]) and AP its underlying scheme,
i.e., with trivial log structure. If P is a monoid and A is an R-algebra, the set
AP(A) of A-valued points of AP can be identified with the set of homomorphisms
from the monoid P to the multiplicative monoid underlying A. This set has
a natural monoid structure, and thus AP can be viewed as a monoid object in
the category of R-schemes. The canonical map P → P gp induces a morphism
A∗P := APgp = APgp → AP which identifies A∗P with the group scheme of units
of AP. The natural morphism of log schemes AP → AP is injective on A-valued
points, and its image coincides with the image of the map A∗P → AP. If K
is an ideal of P , the subscheme AP,K := Spec(R[P,K]) it defines is invariant
under the monoid action of AP on itself, so that AP,K defines an ideal of the
monoid scheme AP. Then K generates a (coherent) sheaf of ideals KX in
the sheaf of monoids MX of AP, and the restriction of MX and KX to AP,K

give it the structure of an idealized log scheme AP,K. It can be shown that,
using Grothendieck’s definition of smoothness via ideally strict infinitesimal
thickenings as in [6], the ideally smooth log schemes over SpecR are exactly
those that are, locally in the étale topology, isomorphic to AP,K for some P and
K. Note that these are the log schemes considered by Kato and Nakayama in
[7].
Suppose from now on that P is toric. Then A∗P is a torus with character group
P gp, and the evident map A∗P to AP is an open immersion. The complement F
of a prime ideal p of P is by definition a face of P . It is a submonoid of P , and
there is a natural isomorphism of monoid algebras R[F ] ∼= R[P ]/p, inducing
an isomorphism AP,p

∼= AF. If k is an algebraically closed field, AP,p(k) is the
closure of an orbit of the action of A∗P (k) on AP(k), and in this way the set of all
faces of P parameterizes the set of orbits of AP(k). In particular, the maximal
ideal P+ of P is the complement of the set of units P ∗ of P , and defines the
minimal orbit of AP.
The map P → R sending every element of P ∗ to 1 and every element of P+ to
0 is a homomorphism of monoids, and hence defines an R-valued point of AP,
called the vertex of AP. The vertex belongs to AP,K for every proper ideal K of
P . By definition P := P/P ∗; and the surjection P → P induces a strict closed
immersion AP → AP. The inclusion P ∗ → P defines a (log) smooth morphism
AP → AP∗ ; note that AP∗ is a torus and that AP is the inverse image of its
origin 1 under this map. Thus there is a Cartesian diagram:

v - AP
- 1

AP,P+

?
- AP

?
- AP∗

?

The action of the torus A∗P on AP manifests itself algebraically in terms of a P gp-
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grading on R[P ]: R[P ] is a direct sum of R-modules R[P ] = ⊕{Ap : p ∈ P gp},
and the multiplication map sends Ap ⊗ Aq to Ap+q. Quasi-coherent sheaves
on AP which are equivariant with respect to the torus action correspond to
P gp-graded modules over R[P ].
More generally, if S is a P -set, there is a notion of an S-graded R[P ]-module.
This is anR[P ]-module V together with a direct sum decomposition V = ⊕{Vs :
s ∈ S}, such that for every p ∈ P , multiplication by ep : V → V maps each Vs
to Vp+s. For example, R[S] is defined to be the free R-module generated by s in
degree s, and if es is a basis in degree s and p ∈ P , epes := ep+s. Morphisms of
S-graded modules are required to preserve the grading. We denote byModSR(P )
the category of S-graded R[P ]-modules and S-graded maps, and if K is an
ideal of P , we denote by ModSR(P,K) the full subcategory consisting of those
modules annihilated by K (i.e., by the ideal of R[P ] generated by K). If the
ring R is understood we may drop it from the notation.
Equivalently, one can work with S-indexed R-modules. Recall that the trans-
porter of a P -set S is the category whose objects are the elements of S and
whose morphisms from an object s ∈ S to an object s′ ∈ S are the elements
p ∈ P such that p + s = s′, (with composition defined by the monoid law of
P ). Then an S-indexed R-module is by definition a functor F from the trans-
porter of S to the category of R-modules. If F is an S-indexed R-module, then
⊕{F (s) : s ∈ S} has a natural structure of an S-graded R[P ]-module. This con-
struction gives an isomorphism between the category of S-graded R[P ]-modules
and the category of S-indexed R-modules, and we shall not distinguish between
these two notions in our notation. See also the discussion by Lorenzon [8].
If the action of P on S extends to a free action of P gp on the localization of S
by P we say that S is potentially free. If S is potentially free, then whenever
s and s′ are two elements of S and p is an element of P such that s′ = p + s,
then p is unique, and the transporter category of S becomes a pre-ordered
set. In this case, an S-indexed module F for which all the transition maps are
injective amounts to an S-filtered R-module, and the corresponding S-graded
R[P ]-module is torsion free.
In particular let φ : P → Q be a morphism of monoids. Then Q inherits
an action of P , and so it makes sense to speak of a Q-graded R[P ]-module.
The morphism φ also defines a morphism of monoid schemes Aφ : AQ → AP,
and hence an action µ : AP×AQ → AP of AQ on AP. A Q-grading on an
R[P ]-module E then corresponds to an AQ-equivariant quasi-coherent sheaf
Ẽ on AP, i.e., a quasi-coherent sheaf Ẽ together with a linear map µ∗Ẽ →
pr∗1Ẽ on AP×AQ satisfying a suitable cocycle condition. We shall be especially
concerned with the case in which Q is a submonoid of R⊗P gp, or even R⊗P gp
itself.

Remark 1.1.1 Let φ : P → Q be a morphism of monoids, let S (resp. T ) be
a P -set (resp. a Q-set) and let ψ : S → T be a morphism of P -sets over φ.
Then if E is an object of ModSR(P ), the tensor product R[Q] ⊗R[P ] E has a
natural T -grading, uniquely determined by the fact that if x ∈ E has degree



10 Arthur Ogus

s and q ∈ Q, then eq ⊗ x has degree q + ψ(s). This works because if p ∈ P ,
(q + φ(p)) + ψ(s) = q + ψ(p + s). We denote this T -graded R[P ]-module by
φ∗ψ(E). If F is an object of ModTR(Q), then there is a natural map of R[P ]-
modules:

φψ∗ (F ) := ⊕s∈SFψ(s) → φ∗F = ⊕t∈TFt.

Furthermore φψ∗ (F ) is naturally S-graded, and the functor φψ∗ is right adjoint
to the functor φ∗ψ. For example, if P is the zero monoid and T = Qgp, then
the adjoint to the functor Mod(R) → ModQ

gp

R (Q) is the functor which takes
a Qgp-graded module to its component of degree zero. We denote this functor
by πQ∗ .

Proposition 1.1.2 Let P be an integral monoid, let S be a potentially free
P -set, and view the orbit space S/P ∗ as a P -set, so that the projection π : S →
S/P ∗ is a morphism over the morphism π : P → P .

1. The base-change functor

π∗π : ModSR(P )→Mod
S/P∗

R (P )

is an equivalence of categories.

2. If E is any object of ModSR(P ), E := π∗πE, and s ∈ S maps to s ∈ S/P ∗,
then the natural map Es → Es is an isomorphism.

Proof: Let I be kernel of the surjective map R[P ]→ R[P ]. This is the ideal
generated by the set of elements of the form 1− eu : u ∈ P ∗. If E is an object
of ModSR(P ), then E := π∗πE

∼= E/IE. Since S is potentially free as a P -set,
the action of the group P ∗ on S is free. Thus an element t of S/P ∗, viewed as a
subset of S, is a torsor under the action of P ∗. Let Et := ⊕{Es : s ∈ t}. Then
Et has a natural action of R[P ∗] and Et ∼= Et ⊗R[P∗] R, where R[P ∗] → R is
the map sending every element of P ∗ to 1R. Let t := s, and let J be the kernel
of the augmentation map R[P ∗]→ R. Since J and I have the same generators,
Et ∼= Et/JEt. For each s′ ∈ t, there is a unique u′ ∈ P ∗ such that s = u′s′,
and multiplication by eu′ defines an isomorphism ιs′ : Es′ → Es. The sum of
all these defines a morphism ι of R-modules Et → Es. If u ∈ P ∗ and s′ := us′′,
then u′′u = u′, and hence ιu′′ ◦ ·eu = ιu′ . Thus ι factors through a morphism
ι of R-modules Et/JEt → Es. The inclusion Es → Et induces a section j:
ι ◦ j = id. Since the map j : Es → Et/JEt is also evidently surjective, it is an
isomorphism inverse to πs. This proves (1.1.2.2), which implies that the functor
π∗π is fully faithful. One checks immediately that ππ∗ is a quasi-inverse.

With the notation of the proposition above, suppose that E is an S-graded
R[P ]-module. The map η : R[P ] → R sending P to 1 can be thought of as a
generic R-valued point of AP. Indeed, this map factors through R[P gp], and the
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above result shows that it induces an equivalence from the category of S⊗P gp-
graded modules to the category of R-modules. Let Eη denote the R-module
η∗E. For each s ∈ S, there is a map of R-modules

cosps,η : Es → Eη.

Corollary 1.1.3 With the notation above, suppose that E is torsion free as
an R[P ]-module and also that it admits a set of homogeneous generators in
degrees t ≤ s (i.e., for each t, there exists p ∈ P with s = p + t). Then the
cospecialization map cosps,η is an isomorphism.

Proof: Let E′ := E ⊗ R[P gp]. Since E is torsion free, the map from E to
E′ is injective. The proposition shows that for any s′ ∈ S ⊗ P gp, the map
E′
s′ → Eη is bijective. So it suffices to see that the map Es → Eη is surjective.

Any x′ ∈ E′
s′ is a sum of elements of the form eqxq, where q ∈ P gp and xq ∈ E

is a homogeneous generator of some degree t ≤ s. Thus it suffices to show that
if x′ is equal to such an eqxq, then its image in Eη is in the image of Es. Write
s = p + t, with p ∈ P , so that x′ = eqxq = eq−p(epxq). Then epxq ∈ Es has
the same image in Eη as does x′.

1.2 Equivariant differentials and connections

Let P be a toric monoid and let X := AP; since X is affine, we may and shall
identify quasi-coherent sheaves with R[P ]-modules. We refer to [6] and [11] for
the definitions and basic properties of the (log) differentials Ω1

X/R and modules
with connection on X/R. Recall in particular that Ω1

X/R is the quasi-coherent
sheaf on X corresponding to the R[P ]-module

R[P ]⊗Z P
gp ∼= R[P ]⊗R ΩP/R,

where ΩP/R := R ⊗ P gp. If p ∈ P , we sometimes denote by dp the class of
1⊗pgp in ΩP/R We write ΩiP/R for the ith exterior power of ΩP/R and TP/R for
its dual; we shall drop the subscripts if there seems to be no risk of confusion.
An element p of P defines a global section β(p) of MX , and

dlog β(p) = dp = 1⊗ pgp

in ΩP/R ⊆ Ω1
X/R. Such an element p also defines a basis element ep of R[P ], and

dep = epdp ∈ Ω1
X/R. The grading of Ω1

X/R for which d is homogeneous of degree
zero corresponds to the action of A∗P on Ω1

X/R induced by functoriality; under
this action, ΩP/R ⊆ Ω1

X/R is the set of invariant forms, i.e., the component
of degree zero. The dual TP/R of ΩP/R can be thought of as the module of
equivariant vector fields on AP. If E is an R[P ]-module, a connection on the
corresponding sheaf on X corresponds to a map

∇ : E → E ⊗R[P ] Ω1
X/R
∼= E ⊗R ΩP/R,
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and the Leibnitz rule reduces to the requirement that

∇(epx) = epx⊗ dp+ ep∇(x).

for p ∈ P and x ∈ E.

Remark 1.2.1 If K is an ideal of P , let AP,K be the idealized log subscheme
of AP defined by K. Then the structure sheaf of AP,K corresponds to R[P,K]
and Ω1

X/R to R[P,K]⊗R Ω1
P/R. Thus the category of modules with integrable

connection on AP,K /R can be identified with the full subcategory of modules
with integrable connection on AP /R annihilated by K. This remark reduces
the local study of connections on idealized log schemes to the case in which the
ideal is empty.

Suppose now that S is a P -set and (E,∇) is an S-graded R[P ]-module with
an integrable log connection. The S-grading on E induces an S-grading on
Ω1
P/R ⊗E; we say that ∇ is homogeneous if it preserves the grading. Thus for

each s ∈ S and p ∈ P , there is a commutative diagram

Es
∇+ dp- Es ⊗R ΩP/R

Ep+s

ep

? ∇- Ep+s ⊗R ΩP/R

ep

?

For example, the data of a homogeneous log connection on R[S] amounts simply
to a morphism of P -sets d : S → Ω1

P/R. Note that such a morphism defines a
pairing 〈 , 〉 : TP/R × S → R.

Definition 1.2.2 Let (P,K) be an idealized monoid and R a ring. Then a
set of exponential data for (P,K) over R is an abelian group Λ together with
homomorphisms P → Λ and Λ→ ΩP/R whose composition is the map p 7→ dp.
The data are said to be rigid if for every nonzero λ ∈ Λ, there exists a t ∈ TP/R
such that 〈t, λ〉 ∈ R∗.

Typical examples are Λ = P gp, Λ = R ⊗ P gp, and Λ = k ⊗ P gp, where k is a
field contained in R. Rigidity implies that Λ→ Ω is injective, and is equivalent
to this if R is a field. Note that if R is flat over Z, the map P gp → Ω is also
injective.
We sometimes just write Λ for the entire set of exponential data. Given such
data, P acts on Λ and it makes sense to speak of a Λ-graded R[P ]-module with
homogeneous connection. For example, R[P ] can be viewed as a Λ-graded
R[P ]-module, where ep is given degree δ(p) as in (1.1.1), and the connection d
is Λ-graded. Because the homomorphism Λ → ΩP/R is also a map of P -sets,
R[Λ] also has such a structure. Associated to the map P → Λ is a map from the
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torus AΛ to AP and a consequent action of AΛ on AP. Then a Λ-graded R[P ]-
module with connection corresponds to quasi-coherent sheaf with connection
on AP which is equivariant with respect to this action.

Definition 1.2.3 Let (P,K) be an idealized toric monoid and let

P
δ- Λ

ε- ΩP/R

be a set of exponential data for P/R.

1. MICΛ(P,K/R) is the category of Λ-graded R[P ]-modules with homoge-
neous connection and morphisms preserving the connections and gradings.

2. An object (E,∇) of MICΛ(P,K/R) is said to be normalized if for every
t ∈ TP/R and every λ ∈ Λ the endomorphism of Eλ induced by ∇t−〈t, λ〉
is locally nilpotent. The full subcategory of MICΛ(P,K/R) consisting of
the normalized (resp. of the normalized and finitely generated) objects is
denoted by MICΛ

∗ (P,K/R) (resp. MICΛ
coh(P,K/R)).

Remark 1.2.4 Let MIC(P,K/R) be the category of R[P,K]-modules with
integrable log connection but no grading. If the exponential data are rigid, the
functor MICΛ

∗ (P,K/R) → MIC(P,K/R) is fully faithful. To see this, note
first that, since the category MICΛ(P,K/R) has internal Hom’s, it suffices to
check that if (E,∇) is an object of MICΛ

∗ (P,K/R) and e ∈ E is horizontal,
then e ∈ E0. In other words, we have to show that ∇ is injective on Eλ if
λ 6= 0. Since the data are rigid, there exists a t ∈ T such that 〈t, λ〉 is a unit,
and then the action of ∇t on Eλ can be written as 〈t, λ〉 plus a locally nilpotent
endomorphism. It follows that ∇t is an isomorphism.

When the choice of Λ is clear or fixed in advance, we shall permit ourselves to
drop it from the notation. We also sometimes use the same letter to denote an
element of P or Λ and its image in Λ or ΩP/R. This is safe to do if the maps
P → Λ and Λ→ ΩP/R are injective.

Example 1.2.5 The differential d : R[P,K] → R[P,K] ⊗R ΩP/R defines an
object of MICΛ

coh(P/R), for any Λ. More generally, choose λ ∈ Λ, and let
Lλ denote the free Λ-graded R[P,K]-module generated by a single element xλ
in degree λ, with the connection d such that d(epxλ) = epxλ ⊗ (dp + ε(λ)).
If t ∈ TP/R, then dt(epxλ) = 〈t, p+ λ〉. Since epxλ has degree δ(p) + λ and
dt−〈t, dp+ ε(λ)〉 = 0 in this degree, Lλ belongs toMICΛ

coh(P,K/R). For λ and
λ′ in Λ there is a homogeneous and horizontal isomorphism Lλ⊗Lλ′ → Lλ+λ′

sending xλ ⊗ xλ′ to xλ+λ′ , and in this way one finds a ring structure on the
direct sum ⊕{Lλ : λ ∈ Λ}, compatible with the connection. This direct sum is
in some sense a universal diagonal object of MICΛ

∗ (P,K/R). The ring ⊕λLλ
can be identified with the tensor product of the monoid algebras R[P ] and
R[Λ], or with the quotient of the monoid algebra R[P ⊕ Λ] of P ⊕ Λ by the



14 Arthur Ogus

ideal generated by K. We shall also denote it by R[P,K,Λ]. Note the unusual
grading: the degree of epxλ is δ(p) + λ. The ring R[P,K,Λ] admits another Λ
grading, in which epxλ has degree λ. In fact it is naturally Λ⊕ Λ graded. For
convenience, shall set Λ′ := Λ and say that epxλ′ has Λ-degree δ(p) + λ′ and
Λ′-degree λ′. When we need to save space, we shall let P stand for the pair
(P,K) and just write R[P,Λ] instead of R[P,K,Λ].

Example 1.2.6 One can also construct a universal nilpotent object as follows.
Let Ω := ΩP/R, and for each n ∈ N, let Ω → Γn(Ω) denote the universal
polynomial law of degree n [2, Appendix A] over R. Thus, Γn(Ω) is the R-
linear dual of the nth symmetric power of TP/R, and Γ·(Ω) := ⊕nΓn(Ω) is the
divided power polynomial algebra on Ω. It has an exterior derivative d which
maps Γn(Ω) to Γn−1(Ω)⊗ Ω, defined by

dω
[I1]
1 · · ·ω[In]

n :=
∑
i

ω
[I1]
1 · · ·ω[Ii−1]

i · · ·ω[In]
n ⊗ ωi (1.2.1)

Of course, if R is a Q-algebra, Γn(Ω) can be identified with the nth symmetric
power of Ω. Let N(P,K) := R[P,K]⊗RΓ·(Ω), graded so that Γ·(Ω) has degree
zero, and let

∇ : N(P,K)→ N(P,K)⊗R ΩP/R := d⊗ id + id⊗ d

be the extension of d satisfying the Leibnitz rule with respect to R[P ]. Then
N(P,K) ∈ MICΛ

∗ (P,K). Note that N∗(P,K) has an exhaustive filtration F·,
where Fn :=

∑
i≤nR[P,K] ⊗ Γi(Ω), and the associated graded connection is

constant.

1.3 Equivariant Higgs fields

Let X be a smooth scheme over R, let ΩX/R be its sheaf of Kahler differentials,
and let TX/R be the dual of ΩX/R. Recall [13] that a Higgs field on a sheaf F of
OX -modules is an OX -linear map θ : F → F ⊗ Ω1

X/R such that the composite
F → F⊗Ω1

X/R → F⊗Ω2
X/R vanishes. Such a θ is equivalent to an action of the

symmetric algebra S·TX/R on F , and hence defines a sheaf of OT∗
X/R

-modules,
where T∗

X/R := VTX/R := SpecX S·TX/R is the cotangent bundle of X/R. One
can prolong a Higgs field θ to a complex

K·(F, θ) := F → F ⊗ Ω1
X/R → F ⊗ Ω2

X/R → · · ·

withOX -linear boundary maps induced by θ, called the Higgs complex of (F, θ).
All these constructions make sense with TX/R replaced by any locally free sheaf
T of OX -modules, and we call (F, θ) an OX-T -module or T -Higgs-module in
the general case.
One can define internal tensor products and duals in the category of T -Higgs
modules in the same way one does for modules with connection. For example,
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if θ and θ′ are T -Higgs fields on F and F ′ respectively, then θ ⊗ id + id ⊗ θ′
is the Higgs field on F ⊗ F ′ used to define the internal tensor product. If ω
is a section of the dual Ω of T , the ω-twist of a T -Higgs field θ is the T -Higgs
field θ + id ⊗ ω. An R-T module (F, θ) is said to be nilpotent if θt defines a
locally nilpotent endomorphism of F for every t ∈ T . This means that the
corresponding sheaf on VT is supported on the zero section.
A Jordan decomposition of a T -Higgs module (E, θ) is a direct sum decomposi-
tion E ∼= ⊕Eω : ω ∈ Ω such that each Eω is invariant under θ and is the ω-twist
of a nilpotent T -Higgs module. For example, if R is an algebraically closed field
and E is finitely generated, then E can be viewed as a module of finite length
over S·T and its support is a finite subset of the maximal spectrum of S·T ,
which can be canonically identified with Ω. Thus E admits a canonical Jordan
decomposition E ∼= ⊕Eω.
The following simple and well-known vanishing lemma will play a central role.

Lemma 1.3.1 Let (F, θ) be a T -Higgs module and suppose there exists a t ∈ T
such that θt is an automorphism of F . Then the Higgs complex K·(F, θ) is
homotopic to zero, hence acyclic.

Proof: Interior multiplication by t defines a sequence of maps

ρi : F ⊗ Ωi → F ⊗ Ωi−1.

One verifies easily that κ := dρ + ρd is θt ⊗ id. Thus θt induces the zero map
on cohomology, and since θt is an isomorphism, the cohomology vanishes.

We shall see that there is a simple relationship between equivariant Higgs fields
and equivariant connections. In fact there are two constructions we shall use.

Definition 1.3.2 Let P be an idealized toric monoid and P
d- Λ

ε- ΩP/R
a set of exponential data for P .

1. HIGΛ(P/R) is the category of Λ-graded R[P ]-TP/R modules. That is,
the objects are pairs (E, θ), where E is a Λ-graded R[P ]-module and

θ : E → E ⊗R ΩP/R

is a homogeneous map such that θ ∧ θ = 0, and the morphisms are the
degree preserving maps compatible with θ.

2. An object (E, θ) of HIGΛ(P/R) is nilpotent if for every t ∈ TP/R,
the endomorphism θt of E is locally nilpotent. The full subcategory of
HIGΛ(P/R) consisting of nilpotent (resp., the nilpotent and finitely gen-
erated objects) is denoted by HIGΛ

∗ (P/R) (resp., HIGΛ
coh(P/R)).
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Example 1.3.3 If λ ∈ Λ, let Lλ be the free Λ-graded R[P ]-module generated
in degree λ by xλ. Then there is a unique TP/R-Higgs field θ on Lλ such that
θ(epxλ) = epxλ ⊗ ε(λ) for each p ∈ P . The isomorphism Lλ ⊗ Lλ′ → Lλ+λ′

sending xλ⊗xλ′ to xλ+λ′ is compatible with the induced Higgs fields, so we get
a Higgs field θ on R[P,Λ] = ⊕Lλ, compatible with the ring structure. Similarly
there is a unique Higgs field on N(P ) = R[P ]⊗ Γ·(Ω) such that

ω
[I1]
1 · · ·ω[In]

n 7→
∑
i

ω
[I1]
1 · · ·ω[Ii−1]

i · · ·ω[In]
n ⊗ ωi

for all I.

Let (E,∇) be an object of MICΛ(P/R). We can forget the R[P ]-module
structure of E and view it as an R-module. Since TP/R is a finitely generated
free R-module, ∇ : E → E ⊗ ΩP/R can be viewed as a TP/R-Higgs field on E.
If R is an algebraically closed field and E is finite dimensional over R, such
fields are easy to analyze, using its Jordan decomposition. We can generalize
this as follows.

Lemma 1.3.4 Let P → Λ → ΩP/R be a rigid set of exponential data for an
idealized monoid P .

1. Let (E,∇) be an object of MIC(P,K/R). Suppose the corresponding
TP/R-Higgs module (E,∇) admits a Jordan decomposition E = ⊕Eλ,
where λ ranges over a rigid set of exponential data. Then this direct sum
decomposition gives E the structure of a Λ-graded R[P,K]-module, and
with this structure, (E,∇) ∈ MICΛ

∗ (P,K/R). Thus, MICΛ
∗ (P,K/R) is

equivalent to the full subcategory of MICΛ(P,K/R) whose corresponding
TP/R-Higgs modules admit a Jordan decomposition.

2. If (E,∇) ∈ MICΛ
∗ (P,K/R), then its de Rham complex is acyclic except

in degree zero.

Proof: Let θλ := ∇− id ⊗ λ. The Leibnitz rule implies that for each p ∈ P
and t ∈ T , θt,λ+p ◦ ep = ep ◦ θt,λ. It follows that θnt,λ+p ◦ ep = ep ◦ θnt,λ, for
every n ≥ 0. If x ∈ Eλ, then x is killed by some power of θt,λ, and hence epx
is killed by some power of θt,λ+p. For any λ′, θt,λ′ = θt,λ+p + 〈t, λ′ − p− λ〉. If
λ′ 6= p+λ, we can choose t so that 〈t, λ′ − p− λ〉 is a unit, and hence θt,λ+p acts
injectively on Eλ′ . It follows that the degree λ′ piece of epx is zero. In other
words, ep maps Eλ to Ep+λ. This shows that ⊕Eλ gives E the structure of a Λ-
graded R[P ]-module. Evidently each Eλ is invariant under ∇, and killed by K,
and with this grading, (E,∇) ∈MICΛ

∗ (P,K/R). We have already remarked in
(1.2.4) that MICΛ

∗ (P,K/R) is a full subcategory of MIC(P,K/R). The TP/R-
Higgs module associated to every object of MICΛ

∗ (P,K/R) admits a Jordan
decomposition, by definition, and the above argument show that the converse
is also true. This proves (1).
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Let (E,∇) be an object of MICΛ
∗ (P,K/R). Its de Rham complex is Λ-graded,

and its component in degree λ can be viewed as the Higgs complex associated
to the linear map ∇ : Eλ → Eλ ⊗ ΩP/R. If λ 6= 0, then there exists a t ∈ TP
such that 〈t, λ〉 is not zero, hence a unit. Since E is normalized, ∇t − 〈t, λ〉 is
nilpotent, and hence ∇t an isomorphism, in degree λ. By (1.3.1), this implies
that the complex E ⊗ Ω·P/R is acyclic in degree λ and proves (2).

In general, suppose that E is an object of MICΛ(P/R). Then the degree λ
component of ∇ is a Higgs field on Eλ. Then

θλ := ∇− idEλ
⊗ λ : Eλ → Eλ ⊗R Ω1

P/R

is another Higgs field, and evidently (E,∇) is normalized if and only if this field
is nilpotent for every λ ∈ Λ. Moreover, θ := ⊕λθλ is R[P ]-linear, and endows
E with the structure of an equivariant R[P ]-TP/R-module. This Higgs module
structure can be viewed as the difference between the given connection ∇ and
the “trivial” connection coming from the action of Λ. This simple construction
evidently gives a complete description of the category of equivariant connections
in terms of the category of nilpotent equivariant Higgs modules, and it will play
a crucial role in our proof of the equivariant Riemann-Hilbert correspondence.
We shall see that the above correspondence can be expressed in terms of a suit-
able “integral transform.” As it turns out, this integral transform introduces a
sign. To keep things straight, we introduce the following notation. Let

P
δ- Λ

ε- ΩP/R

be a set of exponential data for a toric monoid P . Let P ′ := −P ⊆ P gp, let
Λ′ := Λ, let ε′ := ε, and let δ′ : P ′ → Λ′ be the composite of the inclusion
−P → P gp with δgp : P gp → Λ. Thus we have a commutative diagram:

P
δ - Λ

ε- ΩP/R

P ′

−id

? −δ′ - Λ′

id

? ε′- ΩP ′/R.

id

?

(Note that the vertical arrow on the right is the map induced by the iden-
tity map P gp → P gp = (−P )gp and is the negative of the map induced by
functoriality from the isomorphism P ′ → P .)
In the context of the above set-up, there is a completely trivial equivalence
between the categories ModΛ

R(P,K) and ModΛ′

R (P ′,K ′), where K ′ := −K.
Namely, if (E,∇) ∈ ModΛ

R(P,K), then for each λ′ ∈ Λ′ = Λ, let E′
λ′ := E−λ′ .

If p′ ∈ P ′, −p′ ∈ P , and one can define

·ep′ : E′
λ′ → E′

λ′+p′
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to be multiplication by e−p′ . This gives ⊕E′
λ′ the structure of a Λ′-graded

R[P ′,K ′]-module, and it is evident that the functor E 7→ E′ is an equivalence.
This is too trivial to require a proof, but since it will be very useful in our
following constructions, it is worth stating for further reference.

Proposition 1.3.5 Let (P,K) be an idealized toric monoid endowed with ex-

ponential data P
δ- Λ

ε- Ω and let P ′ δ′- Λ′ ε′- Ω be the correspond-
ing exponential data for (P ′,K ′).

1. The functor ModΛ
R(P,K) → ModΛ′

R (P ′,K ′) described above is an equiv-
alence of categories, compatible with tensor products and internal Hom.

2. If (E,∇) ∈MICΛ(P,K/R), let E′ be the object of ModΛ′

R (P ′,K ′) corre-
sponding to E, and define θ′ : E′ → E′ ⊗R Ω by the following diagram:

Eλ
= - E′

−λ

Eλ ⊗ Ω

∇− id⊗ ε(λ)

? =- E′
−λ ⊗ Ω

θ′

?

Then θ′ defines a Higgs field on E′, and the corresponding functor
MICΛ(P,K/R)→ HIGΛ′

(P ′,K ′/R) is an equivalence. Under this func-
tor,an object (E,∇) is normalized if and only if the corresponding (E′, θ′)
is nilpotent.

The value of the above proposition will be enhanced by the fact that its functors
can be realized geometrically, using the ring R[P,Λ] described in (1.3.3) and
(1.2.5). (Here P stands for an idealized monoid (P,K).)
We have morphisms of monoids:

φ : P → P ⊕ Λ : p 7→ (p, 0)
η : P ⊕ Λ→ Λ : (p, λ) 7→ δ(p) + λ

φ′ : P ′ → P ⊕ Λ : p′ 7→ (−p′, δ′(p′))
ψ : P ⊕ Λ→ Λ⊕ Λ : (p, λ) 7→ (δ(p) + λ, λ)

π : Λ→ Λ⊕ Λ : λ 7→ (λ, 0)
π′ : Λ→ Λ⊕ Λ : λ 7→ (0, λ)
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These fit into commutative diagrams:

P
φ- P ⊕ Λ P ′ φ′- P ⊕ Λ

Λ

δ

? π- Λ⊕ Λ

ψ

?
Λ

δ′

? π′- Λ⊕ Λ

ψ

?

Note that η ◦ φ′ = 0 and that Aφ corresponds to the projection q : AP×AΛ →
AP. Let q′ := Aφ′ . Then there is a commutative diagram:

AΛ

Aη- AP×AΛ

q′ - AP′

@
@

@
@

@
Aδ

R
AP

q = pr1

?

In this diagram, Aη is a closed immersion, and identifies AΛ with q′−1(1AP′
).

Recall from (1.2.5) that R[P,Λ] is a Λ⊕Λ′-graded ring, where epxλ′ has degree
(δ(p) + λ′, λ′). Thus, a Λ-Λ′-graded R[P,Λ]-module is an R[P,Λ]-module Ẽ
together with a direct sum decomposition into subR-modules Ẽ = ⊕Ẽλ,λ′ , such
that multiplication by epxµ maps Ẽλ,λ′ into Ẽδ(p)+λ+µ,λ′+µ. The category of
such objects (with bihomogeneous morphisms) will be denoted byModΛ′

Λ (P,Λ).
The pair of morphisms (φ, π) induces a functor

q∗π : ModΛ
R(P )→ModΛ′

Λ (P,Λ) : E 7→ E ⊗R[P ] R[P,Λ] ∼= E ⊗R R[Λ],

where E⊗RR[Λ] is graded so that e⊗xλ′ has bidegree (λ+λ′, λ′) if e ∈ E has
degree λ, as discussed in (1.1.1). Recall that its left adjoint, which we denote
by qπ∗ or qΛ

′

∗ , takes an object of ModΛ′

Λ (P,Λ) to the Λ-graded R[P ]-submodule
consisting of the elements whose Λ′-degree is zero.
Recall that the connection ∇ on R[P,Λ] sends epxλ to epxλ ⊗ (dp + ε(λ)). In
particular, epx−p is horizontal. This implies that, when R[P,Λ] is regarded
as an R[P ′]-module via q′∗, ∇ is R[P ′]-linear, and in fact defines an element
of HIGΛ′

(P ′/R). More generally, if (E,∇) ∈ MICΛ(P/R), the tensor prod-
uct connection ∇̃ on q∗π(E) is an equivariant Higgs field on the R[P ′]-module
q′∗q

∗
π(E). On the other hand, if θ′ is an equivariant Higgs field on a Λ′-graded

R[P ′]-module E′, the tensor product Higgs field θ̃ := d⊗ id + id⊗ θ′ on q′∗π′E
′

is a connection over R[P ]. Thus we have functors

q′Λ∗ q
∗ : MICΛ(P/R)→ HIGΛ′

(P ′/R)

qΛ
′

∗ q
′∗ : HIGΛ′

(P ′/R)→MICΛ(P/R)
(1.3.1)
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Remark 1.3.6 Let R[P ′,Λ′] be the ring constructed from P ′ → Λ′ the same
way R[P,Λ] was constructed from R[P,Λ]. Then R[P ′,Λ′] is a Λ′-Λ-graded
R-algebra, where ep′xλ′ has degree (p′ + λ′, λ′). The isomorphism of monoids
P ⊕Λ→ P ′ ⊕Λ sending (p, λ) to (−p, p+ λ) induces an isomorphism of R[Λ]-
algebras

ι : R[P,Λ]→ R[P ′,Λ′] : epxλ 7→ e−pxp+λ.

It takes elements of degree (λ, λ′) to elements of degree (λ′, λ). Its inverse ι′ is
constructed from the data P ′ → Λ′ just as ι was constructed from P → Λ, and
the map q′∗ : R[P ′] → R[P,Λ] is just the inclusion R[P ′] → R[P ′,Λ′] followed
by ι′. Since Λ′ is a group, Proposition (1.1.2) implies that q∗π is an equivalence:
ModΛ

R(P ) → ModΛ′

Λ (P,Λ/R), with quasi-inverse qΛ
′

∗ . Of course, ι∗ is also an
equivalence, and hence so are the functors in (1.3.1).

Proposition 1.3.7 The equivalence in Proposition (1.3.5) is given by the
functors (1.3.1).

Proof: For any λ ∈ Λ, xλ is a unit of R[P,Λ] and ι(xλ) = xλ ∈ R[P ′,Λ′].
Then multiplication by x−λ induces an isomorphism q∗πE → ι∗q∗πE which takes
Eλ to E′

−λ; this is the isomorphism in (1.3.5.2). If e ∈ Eλ,

∇̃(x−λe) = x−λ∇e+ (∇x−λ)e = x−λ(∇e− ε(λ)e) = x−λθ
′(e).

This proves the commutativity of the diagram in (1.3.5.2).

1.4 Equivariant Riemann-Hilbert

Now let R = C, and let P → Λ → Ω be a rigid set of exponential data. The
universal cover of the analytic torus A∗anP is the exponential map

exp: VΩan → A∗anP ,

which we can describe as follows. Recall that VΩ is the spectrum of the
symmetric algebra S·(Ω), which is isomorphic to Γ·(Ω), since we are in char-
acteristic zero. Thus the set of points of VΩan is just T := Hom(P gp,C), and
an element ω of Ω defines a function on VΩan whose value at t ∈ T is just
〈t, ω〉. Then exp is the map taking an additive homomorphism t : P gp → C to
the multiplicative homomorphism exp ◦t : P gp → C. The kernel of this map is
the group Hom(P gp,Z(1)), where Z(1) is the subgroup of C generated by 2πi.
Thus there is a canonical isomorphism:

π1(P ) := Hom(P gp,Z(1)) ∼= π1(A∗anP ) = Aut(VΩan/A∗anP ). (1.4.1)

We shall now introduce an “equivariant Riemann-Hilbert transform” which
classifies objects of MICΛ

∗ (P ) in terms of suitably normalized graded repre-
sentations of the fundamental group π1(P ).
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Definition 1.4.1 Let (P,K) be an idealized toric monoid with a rigid set of
exponential data P → Λ → ΩP/C. Then LΛ(P,K) is the category of pairs
(V, ρ), where V is a Λ-graded C[P,K]-module and ρ is a homogeneous action
of π1(P ) on V . An object (V, ρ) of LΛ(P,K) is said to be normalized if for every
γ ∈ π1(P ) and λ ∈ Λ, the action of ργ − exp〈γ, λ〉 on Vλ is locally nilpotent.
The full subcategory of LΛ(P,K) consisting of the normalized objects (resp.
the normalized and finitely generated objects) is denoted by LΛ

∗ (P,K) (resp.
LΛ
coh(P,K)).

Note that the normalization condition in the definition above is compatible
with multiplication by elements of C[P ]. More precisely, if λ ∈ Λ, p ∈ P , and
γ ∈ π1(P ), then multiplication by ep takes Vλ to Vp+λ, and ργ◦(·ep) = (·ep)◦ργ .
Moreover, 〈p, γ〉 ∈ Z(1), so exp〈γ, p+ λ〉 = exp〈γ, p〉.

Remark 1.4.2 If P is a finitely generated abelian free group and Λ = C⊗ P ,
the category LΛ

coh(P ) can be simplified: it is equivalent to the category of finite
dimensional C-vector spaces equipped with an action of π1(P ). More generally,
let P be any idealized toric monoid, let Λ be a subgroup of C⊗P gp containing
P gp and let Λ be the image of Λ in C⊗ P gp. Note that π1(P ) ⊆ π1(P ). Let
L

Λ

coh(P ) denote the category of finitely-generated Λ-graded-C[P ]-modules W
equipped with an action ρ of π1(P ) such that for each γ ∈ π1(P ) and each
λ ∈ Λ, the action of ργe−〈γ,λ〉 on Wλ is unipotent. Then the evident functor
(tensoring with C[P ]) is an equivalence of categories:

LΛ
coh(P )→ L

Λ

coh(P ).

Here is a sketch of why this is so. To see that it is fully faithful, let V be an
object of LΛ

coh(P ) and let V := V ⊗C[P ] C[P ]; it is enough to prove that the
natural map V π1

0 → V
π1

0 is an isomorphism. Let Λ∗ := Λ ∩ (C ⊗ P ∗) and let
VΛ∗ := ⊕Vλ : λ ∈ Λ∗. Then VΛ∗ is a Λ∗-graded C[P ∗]-module, and V 0 is the
quotient of VΛ∗ by IVΛ∗ , where I is the kernel of the map C[P ∗]→ C sending
every element of P ∗ to 1. Note that I is the C-submodule of C[P ∗] generated
by the set of all eu − ev : u, v ∈ P ∗. We have an exact sequence:

0→ IVΛ∗ → VΛ∗ → V 0 → 0,

which remains exact if we restrict to the subspace on which the action of π1(P )
is unipotent. The coherence of V implies that the unipotent part of VΛ∗ is
exactly VP∗ , and IVΛ∗ ∩ VP∗ = IVP∗ . Thus there is an exact sequence;

0→ IVP∗ → VP∗ → V
un

0 → 0.

That is, V
un

0 := VP∗/IVP∗ ∼= VP∗ ⊗C[P∗] C. Then by (1.1.2), the natural map
V0 → V

un

0 is an isomorphism, and it follows that V π1
0 → V

π1

0 is an isomorphism,
as desired.
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For the essential surjectivity, letW be an object of L
Λ

coh(P ). For each λ ∈ Λ, Wλ
is a finite dimensional C[π1(P )]-module, and hence can be written as a direct
sum of submodules Wλ,χ, where χ ranges over the set S of homomorphisms
π1(P ) → C∗. If λ ∈ Λ, let eλ : π1 → C∗ be the homomorphism taking γ ∈
π1(P ) to e〈γ,λ〉. By hypothesis, if Wλ,χ 6= 0, the restriction of χ to π1(P ) is eλ.
This implies that there exists a λ ∈ Λ which maps to λ and such that eλ = χ,
and the set of such λ is a torsor under P ∗. For each λ ∈ Λ, let Vλ := Wλ,eλ ,
and for p ∈ P , let multiplication by ep : Vλ → Vp+λ be multiplication by ep.
Then ⊕Vλ is the desired object of LΛ

coh(P ).

We can now define the equivariant Riemann-Hilbert correspondence:

V : MICΛ
∗ (P,K)→ LΛ

∗ (P ′,K ′).

Again we use the exponential data for P ′ deduced from the given exponential
data for P . If (E,∇) is an object of MICΛ

∗ (P,K), let V be its corresponding
C[P ′,K ′]-module, as described in (1.3.5). View −∇ as defining a Higgs field
on the underlying C-module of V , and let ρ be the corresponding action of
π1(P ):

ργ := exp(−∇γ) for γ ∈ π1(P ) ⊆ T.

Note that ργ preserves the Λ-grading. It also commutes with the action of
C[P ′] on V . To see this, recall that if p ∈ P , ∇γ ◦ ·e−p = ·e−p ◦ (∇γ − ·〈γ, p〉),
by the Leibnitz rule. Hence

ργ ◦ ·e−p = exp(−∇γ) ◦ ·e−p = ·e−p ◦ exp(∇−γ + ·〈γ, p〉) = e−p ◦ ργ ◦ · exp〈γ, p〉,

and exp〈γ, p〉 = 1. Note also that if γ ∈ π1(P ), ∇γ − 〈γ, λ〉 is locally nilpotent
on Eλ. Hence exp(∇γ)e−〈γ,λ〉 is locally unipotent on Eλ and ργe〈γ,λ〉 is locally
unipotent on V−λ. Hence ργ − e−〈γ,λ〉 is locally nilpotent on V−λ, so (V, ρ) ∈
LΛ
∗ (P ′,K ′).

Proposition 1.4.3 Let P → Λ→ ΩP/C be a rigid set of exponential data for
an idealized toric monoid (P,K), and let P ′ → Λ → ΩP/C be the correspond-
ing exponential data for P ′. The equivariant Riemann-Hilbert correspondence
described above defines an equivalence of tensor categories

V : MICΛ
∗ (P,K)→ LΛ

∗ (P ′,K ′).

If (E,∇) ∈ MICΛ
∗ (P,K) and (V, ρ) := V(E,∇), then there is a canonical

isomorphism
Hi
DR(E,∇) ∼= Hi(π1(P ), V0)

for all i. Moreover, if λ ∈ Λ \ P gp, then Hi(π1(P ), Vλ) = 0 for all i.

Proof: It follows immediately from the construction that V is compatible
with tensor product and duality, hence with internal Hom. To prove that it
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is fully faithful, it suffices to prove that if (E,∇) is an object of MICΛ
∗ (P )

and V = V(E,∇), the map E∇
0 → V π1

0 is an isomorphism. For each γ ∈ π1,
∇γ defines a nilpotent endomorphism of E0, and it will suffice to prove that if
e ∈ E0, ∇γ(e) = 0 if and only if ργ(e) = e. This follows from the formulas:

ργ = id−∇γ +
∇2
γ

2!
− · · ·

−∇γ = (ργ − 1)− (ργ − 1)2

2
+ · · ·

More generally, one has the following result, which implies the statement about
cohomology.

Lemma 1.4.4 Let (E, θ) be a nilpotent TP/C-Higgs module and let V := E with
the action of π := π1(P ) defined by ργ := exp(−θγ) for γ ∈ π1(P ). Then there
are natural isomorphisms:

Hi
HIG(E, θ) ∼= Hi(π, (V, ρ)).

for all i.

Proof: The category of representations of π is equivalent to the category of
Z[π]-modules, and if M is such a module, Hi(π,M) ∼= ExtiZ[π](Z,M), where Z
is the trivial module. Let P · be a finitely generated and projective resolution of
Z over Z[π]. As a sequence of Z-modules, P · is split, and hence it remains exact
when tensored over Z with any ring R. It follow that, if V is an R-module,
ExtiR[π](R, V ) ∼= ExtiZ[π](Z, V ) for every i. Applying this with R = C, we see
that Hi(π, V ) ∼= ExtiC[π](C, V ) for all i. If the action of π on V is unipotent,
then V is in fact a module for the formal completion Ĉ[π] of C[π] at the vertex.
Since this completion is flat over C[π], it follows that the natural map

ExtiC[π](C, V )→ Exti
Ĉ[π]

(C, V )

is an isomorphism.
Let Y := Aπ = SpecC[π], let T := C⊗ π, and suppose that E and V are as in
the lemma. The exponential map induces an isomorphism of formal schemes
V̂T → Ŷ , where V̂T is the formal completion of VT along the zero section
and Ŷ is the formal completion of Y at the vertex. Under this isomorphism, if
γ ∈ π, exp∗ γ = id + γ + γ2/2! + · · · . The Higgs module (E, θ) can be thought
of as quasi-coherent sheaf on VT . Since E is nilpotent, it is supported on the
zero section, and, up to a sign, V ∼= exp∗E. By [1], the Higgs cohomology of
E is Exti

S·T (C, E), where C corresponds to the zero section of VT . As before,
this Ext remains the same when computed on the formal completion. Thus

Hi
HIG(E, θ) ∼= Exti

S·T (C, E) ∼= Exti
Ŝ·T (C, E) ∼= Exti

Ĉ[π]
(C, V ) ∼= Hi(π, V ).
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To prove that V is essentially surjective, let (V, ρ) be an object of L∗(P ′,K ′),
and for each λ ∈ Λ let Eλ := V−λ, so that ⊕Eλ is a Λ-graded C[P ]-module.
For γ ∈ π1, ργe〈γ,λ〉 induces a unipotent automorphism uγ of Eλ, and hence
log uγ := (uγ − 1) − (uγ−1)2

2 + · · · is well defined and nilpotent. Let ∇γ :=
− log uγ+〈γ, λ〉. Then exp(−∇γ) = ργ . Furthermore, ∇γ1+γ2 = ∇γ1+∇γ2 , and
∇γ ◦ ep = ep∇γ + 〈γ, dp〉. Thus (E,∇) ∈ MICΛ

∗ (P,K) and V(E,∇) = (V, ρ),
so that V is essentially surjective.

Remark 1.4.5 If (E,∇) ∈MICΛ
∗ (P,K), then its cohomology vanishes except

in degree zero. This is not true for object of LΛ
∗ (P ′,K ′), and this is why we

have to specify taking the degree zero part in the isomorphism on cohomology.
On the other hand, if λ ∈ Λ \P gp, then the support of Vλ (regarded as a sheaf
on Aπ) does not meet the vertex, so its cohomology is zero.

There is an evident functor LΛ
coh(P ) → LΛ

coh(P
gp). Recall from (1.4.2) that

in the latter category, the grading is superfluous, and that the functor can be
viewed as the functor which takes V to V ⊗C[P ] C via the map C[P ] → C
sending P to 1. This corresponds to evaluating a “generic point” and so we
denote the corresponding module by Vη. There is a cospecialization map V →
Vη and hence a map on cohomology.

Corollary 1.4.6 Let V be a torsion free object of LΛ
coh(P ) and let D ⊆ Λ

be the set of the degrees of a minimal set of homogeneous generators for V .
Suppose that D ∩ P gp ⊆ −P . Then the natural map

Hi(π1(P ), V0)→ Hi(π1(P ), Vη)

is an isomorphism.

Proof: Let V ′ :=
∑
{Vλ : λ ∈ P gp}. Remark (1.4.5) shows that the natural

map Hi(π1(P ), V ′) → Hi(π1(P ), V ) is an isomorphism, and the same is true
for Vη. Thus we may as well assume that V ′ = V . But then Corollary (1.1.3)
shows that the hypothesis on the degrees of the generators implies that the
natural map V0 → Vη is an isomorphism.

As stated, Proposition (1.4.3) is too artificial to be of much value. We shall
show that in fact it can be formulated in a more geometric manner which we
can then use in our proof of the global Riemann-Hilbert correspondence.
Tensoring together the fundamental examples C[P,Λ] (1.2.5) and N(P ) (1.2.6),
we obtain the C[P ]-algebra

J(P,Λ) := C[P,Λ]⊗C Γ·(Ω) ∼= C[P,Λ]⊗C[P ] N(P ).

It has a connection ∇ and a Higgs field θ as explained in Example (1.3.3).
The connection ∇ is in some sense the universal connection in Jordan normal
form. Indeed, we shall see that J(P,Λ) can be viewed as a ring of multivalued
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functions which is large enough to solve all the differential equations coming
from objects of MICΛ

∗ (P/R). This fact is the main computational tool under-
lying the equivariant Riemann-Hilbert correspondence. First let us attempt to
explain its geometric meaning.
The map δ : P → Λ induces a map AΛ → AP. Recall that we write η for the
canonical map from the analytic space Xan associated to a scheme X to X.
The rings of functions C[P ] and C[Λ] on AP and AΛ map to the ring of analytic
functions on VΩan. For example, if p ∈ P and t ∈ T ,

exp∗(ep)(t) = exp〈t, dp〉.

Thus, the function associated to p is the logarithm of the function associated
to ep. Similarly, if λ ∈ Λ, then

exp∗(xλ)(t) := exp〈t, λ〉.

There is a commutative diagram:

VΩan
exp- A∗anP ×A∗anΛ

@
@

@
@

@R
AΛ

η ◦ exp

? Aη - AP×AΛ

η ◦ inc

? q′ - AP′

@
@

@
@

@
Aδ

R
AP

q = pr1

?

Thus we obtain a map from J(P,Λ) to the ring of analytic functions on VΩan.
The group π1(P ) acts on the ring of analytic functions on VΩan by transport of
structure, and preserves the subalgebra Γ·(Ω) of algebraic functions on VΩan

as well as the subring C[P,Λ]. Let us make this explicit.

Lemma 1.4.7 If γ ∈ π1(P ), let ργ act on J(P,Λ) by

ργ(f) = exp(θγ) = exp∇γ := e∇γ := id +
∇γ
1!

+
∇2
γ

2!
+ · · · .

Then this action is compatible with the action on VΩ via the exponential map
and the diagram above.

Proof: The action of π1(P ) on VΩan = T is via translation: ργ(t) = t + γ
if γ ∈ π1(P ) and t ∈ T := Hom(P gp,C). The induced action on the analytic
functions on VΩan is then by transport of structure, and in particular is by
ring automorphisms. On the other hand, if γ ∈ π1(P ) and fi ∈ J(P,Λ), then
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∇γ(f1 + f2) = ∇γ(f1) + ∇γ(f2), and ∇γ(f1f2) = ∇γ(f1)f2 + ∇γ(f2)f1. It
follows that exp(∇γ) is also a ring automorphism of J(P,Λ). Thus it suffices
to check the compatibility of exp∇ and ρ on a set of generators of the algebra
J(P,Λ). In particular, it suffices to check it for ω ∈ Ω ⊆ Γ·(Ω), xλ ∈ J(P,Λ),
and ep ∈ C[P ]. First of all, ∇γ maps Ω to C and is zero on C, and hence

e∇γ (ω) = ω +∇γ(ω) = ω + 〈γ, ω〉.

Thus

〈t, e∇γ (ω)〉 = 〈t, ω〉+ 〈γ, ω〉
= 〈t+ γ, ω〉
= 〈ργt, ω〉
= 〈t, ργ(ω)〉

On the other hand, if λ ∈ Λ, ∇γ(xλ) = 〈γ, λ〉xλ, so e∇γ (xλ) = e〈γ,λ〉xλ. Pulling
back to VΩan and evaluating at t, we get

〈t, e∇γ (xλ)〉 = e〈γ,λ〉〈t, xλ〉
= e〈γ,λ〉e〈t,λ〉

= e〈t+γ,λ〉

= exp∗(xλ)(t+ γ)
= exp∗(xλ)(ργt)
= exp∗(ργ(xλ))(t)

Finally, if p ∈ P , ργ(ep) = ep, and since ∇γep = 〈γ, p〉ep and 〈γ, p〉ep ∈ Z(1),
ep is also fixed by exp(∇̃γ). This proves the compatibility of ρ with ∇. On
the other hand, θγ(epxλω) = ∇γ(xλω) − 〈γ, p〉, and 〈γ, p〉 ∈ Z(1). Hence
exp(θγ) = exp(∇γ), and so ρ is also compatible with θ.

Regarded as a C[P ]-module via the map q∗, (J(P,Λ), d) is an object of
MICΛ

∗ (P ). Regarded as a C[P ′]-module via the map q′∗, (J(P,Λ), ρ) is an
object of LΛ(P ′), where ρ := exp(∇), since ∇ (hence ρ) is C[P ′]-linear over q′∗.
Let us check that it is normalized. Every element of degree λ′ of q′∗(J(P,Λ))
can be written as a sum of elements of the form epwxλ′ with p ∈ P and
w ∈ Γ·(ΩP/C), and

ργ(epwxλ′) = e〈γ,p+λ
′〉(exp∇γ)(w) = e〈γ,λ

′〉(exp∇γ)w.

Since exp∇γ is locally unipotent on Γ·(ΩP/C), e〈γ,λ
′〉 exp(∇γ)−e〈γ,λ

′〉 is locally
nilpotent. Note also that ργ commutes with the connection ∇.
Now we can give description of the equivariant Riemann-Hilbert correspon-
dence as an integral transform. If (E,∇) is an object of MICΛ(P/C), let J∗E
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be Ẽ := E⊗C[P ] J(P,Λ) with the Λ-Λ′-grading and connection ∇̃ as described
in the discussion preceding (1.3.1), and with the action ρ̃ of π1(P ) defined by
idE ⊗ ρ. If (V, ρ) is an object of LΛ′

∗ (P ′), let J ′∗(V ) be Ṽ := V ⊗R[P ′] J(P,Λ),
with the Λ-Λ′-grading as above, with ∇̃ := id⊗d, and with ρ̃ the tensor product
action. In both cases, we end up with a J(P,Λ)-module endowed with a Λ-Λ′-
grading, a connection, and an action of π1(P ). Let q′∇∗ be the functor which
takes such an object to its horizontal sections, regarded as a Λ′-graded C[P ′]-
module with an action of π1(P ). Also, let qΛ

′,π1
∗ denote the part of Λ′-degree

zero which is fixed by ρ̃, regarded a Λ-graded C[P ]-module with connection.

Theorem 1.4.8 Let P → Λ→ ΩP/C be a rigid set of exponential data for an
idealized toric monoid and let P ′ → Λ→ ΩP/C be the corresponding exponential
data for P ′.

1. The functors

V := q′∇∗ J∗ : MICΛ
∗ (P )→ LΛ

∗ (P ′)

and

E := qΛ
′,π1

∗ J ′∗ : LΛ
∗ (P ′)→MICΛ

∗ (P )

are the functors in the equivariant Riemann-Hilbert correspondence
(1.4.3).

2. If (E,∇) ∈ MICΛ
∗ (P ), let (Ẽ, ∇̃, ρ̃) := J∗(E). Then in the category

LΛ
∗ (P ′),

Hi
DR(Ẽ, ∇̃, ρ) =

{
0 if i > 0
V(E,∇) if i = 0.

Furthermore, the natural map V(E,∇)⊗C[P ′] J(P,Λ)→ Ẽ is an isomor-
phism.

3. If (V, ρ) ∈ LΛ′

∗ (P ′), let (Ṽ , ∇̃, ρ̃) := J∗(V, ρ). Then in the category
MICΛ

∗ (P ),

Hi(π1(P ), (Ṽ , ∇̃, ρ))Λ′=0 =

{
0 if i > 0
E(V, ρ) if i = 0.

Furthermore, the natural map E(V, ρ) ⊗C[P ] J(P,Λ) → Ṽ is an isomor-
phism.

We give the proof in the next section, where we deduce it from a more abstract
construction which we call, for want of a better name, the “Jordan transform.”
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1.5 The Jordan transform

Most of the real work in this section makes sense over an arbitrary Q-algebra
R, so we temporarily revert to this generality. To simplify the notation, we
let P be an idealized toric monoid (previously denoted (P,K)), and we let
P → Λ → Ω be a rigid set of exponential data. We have seen in (1.2.5) and
(1.3.3) that R[P,Λ] carries a connection ∇ and a Higgs field θ relative to R[P ].
Note that this is not the Higgs field θ′ constructed from ∇ as in (1.3.5). To
emphasize the symmetric nature of the constructions, we now write ∇′ for θ.
Indeed, ∇ is a Higgs field relative to R[P ′] ⊆ R[P,Λ], and ∇′ is a connection
relative to R[P ′]. Note that ∇′ and ∇ commute.
Let us summarize the structures J(P,Λ) := R[P,Λ]⊗R Γ·(Ω) carries.

1. It has a Λ-grading, where epxλω[i] has degree p + λ, and there is a Λ-
graded homomorphism

q : R[P ]→ J(P,Λ) : ep 7→ epx0.

2. It has a second Λ-grading, (called the Λ′-grading) where epxλω
[i] has

Λ′-degree λ, and a Λ′-graded homomorphism

q′ : R[P ′]→ J(P,Λ) : e′p′ 7→ e−p′xp′ .

3. There is a map ∇ : J(P,Λ)→ J(P,Λ)⊗R ΩP/R such that

∇ : epxλω[i] 7→ epxλω
[i] ⊗ (p+ λ) + epxλω

[i−1] ⊗ ω.

Then q∗(J(P,Λ),∇) ∈ MICΛ
∗ (P/R), and q′∗(J(P,Λ),∇) ∈

HIGΛ′
(P ′/R).

4. There is a map ∇′ : J(P,Λ)→ J(P,Λ)⊗R ΩP/R such that

∇′ : epxλω[i] 7→ epxλω
[i] ⊗ λ+ epxλω

[i−1] ⊗ ω.

Then q∗(J(P,Λ),∇′) ∈ HIGΛ(P/R), and q′∗(J(P,Λ),∇′) ∈
MICΛ′

∗ (P ′/R).

Note also that the set of elements of degree zero with respect to the Λ′-grading
is just R[P ]⊗ Γ·(Ω). Similarly, the set of elements of degree zero with respect
to the Λ-grading is R[P ′]⊗ Γ·(Ω).
Let MHΛ

Λ′(P/R) denote the category of Λ-Λ′-graded J(P,Λ)-modules equipped
with structures parallel to those of J(P,Λ). In particular, an object Ẽ of
MHΛ

Λ′(P/R) is equipped with two commuting homogeneous maps:

∇̃, ∇̃′ : Ẽ → Ẽ ⊗R ΩP/R

where ∇̃ is a homogeneous connection relative to R[P ] and a homogeneous
Higgs structure relative to R[P ′], and ∇̃′ is a Higgs structure relative to R[P ]
and a connection relative to R[P ′].
Consider then the following functors:
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1. If (E,∇) ∈ MICΛ(P/R), let J∗(E) := E ⊗R[P ] J(P,Λ), with the tensor
product gradings, in which E is viewed as having Λ′-degree zero, and
let ∇̃ := ∇ ⊗ id + id ⊗ ∇ and ∇̃′ := idE ⊗ ∇′. Then (J∗(E), ∇̃, ∇̃′) ∈
MHΛ

Λ′(P/R).

2. If (E′,∇′) ∈ MICΛ(P ′/R), let J ′∗(E′) := E′ ⊗R[P ′] J(P,Λ) with the
tensor product gradings, in which E′ is viewed as having Λ′-degree zero,
and let ∇̃′ := ∇′⊗id+id⊗∇′, and ∇̃ := idE′⊗∇. Then (J ′∗(E′), ∇̃, ∇̃′) ∈
MHΛ

Λ′(P/R).

3. If (Ẽ, ∇̃, ∇̃′) ∈ MHΛ
Λ′(P/R), let E := q∇

′

∗ (Ẽ) (resp., qΛ
′

∗ (Ẽ)) denote the
elements which are killed by ∇̃′ (resp., and of Λ′-degree zero.) Then
E is a Λ-graded R[P ]-module with a connection ∇ induced by ∇̃, and
(E,∇) ∈MICΛ(P/R).

4. If (Ẽ, ∇̃, ∇̃′) ∈ MHΛ
Λ′(P/R), let E′ := q′∇∗ (Ẽ) (resp., E′ := q′Λ∗ (Ẽ))

denote the elements which are killed by ∇̃ (resp., and of Λ-degree zero.)
Then E′ is a Λ′-graded R[P ′]-module, with a connection ∇′ induced by
∇̃′, and (E′,∇′) ∈MICΛ′

(P ′/R).

Theorem 1.5.1 Let P
δ- Λ

ε- ΩP/R be a rigid set of exponential data
for a toric idealized monoid. Then the functor q′∇∗ J∗ described above defines
an equivalence of categories

MICΛ
∗ (P/R)→MICΛ′

∗ (P ′/R).

This functor is compatible with tensor products and formation of cohomology,
and has as quasi-inverse the functor q∇

′

∗ J ′∗. Moreover:

1. If (E,∇) ∈ MICΛ
∗ (P/R) corresponds to (E′,∇′) ∈ MICΛ′

∗ (P ′/R), then
for each λ there is a commutative diagram:

Eλ
∼= - E′

−λ

Eλ ⊗ ΩP/R

−∇

? ∼=- E′
−λ ⊗ ΩP/R

∇′

?

2. If (E,∇) ∈MICΛ
∗ (P/R), then

Hi
DR(J∗(E), ∇̃) =

{
E′ := q′∇∗ J∗(E) if i = 0
0 if i > 0.

Hi
HIG(J∗(E), ∇̃′) =

{
E if i = 0
0 if i > 0.
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Furthermore, the natural map E′ ⊗R[P ′] J(P,Λ) → J∗(E) is an isomor-
phism.

3. If (E′,∇′) ∈MICΛ′

∗ (P ′/R), then

Hi
HIG(J ′∗(E′), ∇̃′) =

{
E := q∇

′

∗ J ′∗(E′) if i = 0
0 if i > 0.

Hi
DR(J ′∗(E′), ∇̃) =

{
E′ if i = 0
0 if i > 0.

Furthermore, the natural map E ⊗R[P ] J(P,Λ) → J ′∗(E′) is an isomor-
phism.

We begin with some preliminary lemmas.

Lemma 1.5.2 Let (E,∇) be an object of MICΛ
∗ (P/R).

1. Let K· be the De Rham complex of (E,∇) and let K·Λ=0 be its degree
zero part (with respect to the Λ-grading). Then the map K·Λ=0 → K· is
a quasi-isomorphism.

2. Let K̃· be the Higgs complex of (J∗(E), ∇̃′), and let K̃·Λ′=0 be its degree
zero part with respect to the Λ′-grading. Then the map K̃·Λ′=0 → K̃· is a
quasi-isomorphism.

Proof: The first statement is an immediate consequence of (1.3.4.2). Let

E′′ := E ⊗R Γ·(Ω) ⊆ Ẽ := J∗(E,∇) ∼= E ⊗R Γ·(Ω)⊗R[Λ] ∼= E′′ ⊗R[P ] R[P,Λ].

Then E′′ = ẼΛ′=0, and the action of ∇̃′ on E′′ is nilpotent. For λ′ ∈ Λ, the
action of ∇̃′ on the degree λ′-component of Ẽ is ∇′E′′ + id⊗ λ′. By (1.3.1), its
Higgs complex is then acyclic if λ′ 6= 0. This proves (2).

Lemma 1.5.3 Let T be a free R-module with basis (t1, . . . tn), and let Ω be the
dual of T , with dual basis (ω1, . . . ωn). If (V, θ) is a locally nilpotent T -Higgs
module, let

E′′ := V ⊗R Γ·(Ω), and ∇′′ := θ ⊗ id + id⊗ d.

Let ∂i := ∇′′ti and h : E′′ → E′′ be
∑
I(−1)|I|ω[I]∂I , where the sum is taken

over all multi-indices I = (I1, . . . In) with Ii ∈ N.

1. h is independent of the bases, and defines a projection operator with image
E′′∇′′

.
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2. E′′∇′′
is invariant under id⊗ d, and h induces an isomorphism h′ : V →

E′′∇′′
fitting into a commutative diagram:

V
h′ - E′′∇′′ - V ⊗ Γ·(Ω)

V ⊗ Ω

−θ

? h′ ⊗ id- E′′∇′′
⊗ Ω

?
- V ⊗ Γ·(Ω)⊗ Ω

id⊗ d

?

3. The natural map Γ·(Ω) ⊗ E′′∇′′ → E′′ is an isomorphism, with inverse∑
ω[I] ⊗ h∂I .

4. The De Rham cohomology Hi
DR(E′′) of E′′ vanishes if i > 0.

Proof: Most of this lemma is more or less standard, at least if one replaces
the polynomial ring Γ·(Ω) by its formal completion at the origin. Notice first
that for any n > 0,

∑
{ω[I] ⊗ tI : |I| = n} is the matrix for the canonical

pairing between Γn(Ω) and Symn(T ). It follows that h (the Kasimir operator)
is independent of the basis. The local nilpotence of the operators ∂i implies that
the operator h is well-defined, and the fact that it is a projection with image
E′′∇′′

is an immediate calculation. It is apparent from the definition that h′

is injective. To see that it is surjective, write an arbitrary e′′ ∈ E′′∇ as a sum
e′′ =

∑
ω[I] ⊗ vI with vI ∈ V . Then e′′ and h′(v0) are two elements of E′′∇′′

which agree modulo the ideal Γ+(Ω) of Γ·(Ω). It follows from the well-known
complete version of this lemma that they agree in the formal completion at this
ideal, and hence that they agree. This shows that h′ is also surjective. Note
that θ ◦h′ = (h′⊗ id)◦θ. If v ∈ V , ∇′′h′(v) = 0, and since ∇′′ = id⊗d+θ⊗ id,

(id⊗ d) ◦ h′(v) = −(θ ⊗ id) ◦ h′(v)
= −(h′ ⊗ id) ◦ θ(v)

This proves that the diagram in (2) commutes. Statement (3) is a straight-
forward calculation, and (4) then follows, since (3) reduces the computation
of De Rham cohomology to the case of the trivial connection, which of course
vanishes, by the Poincaré lemma in crystalline cohomology.

Proof of Theorem (1.5.1) Let (E,∇) be an object of MICΛ
∗ (P/R) and let

(Ẽ, ∇̃, ∇̃′) be J∗(E,∇). Since (E,∇) and (J(P,Λ),∇) are normalized, so is
(Ẽ, ∇̃). We have

Ẽ := E ⊗R[P ] J(P,Λ) ∼= E ⊗R R[Λ]⊗R Γ·(Ω).

Let (V, θ) := (E⊗RR[Λ], ∇̃)Λ=0 and let E′′ := ẼΛ be the part of Ẽ of Λ-degree
zero. Thus

E′′ := ẼΛ=0
∼= V ⊗R Γ·(Ω),
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and (V, θ) is just the Higgs transform (1.3.7) of E. Since θ is nilpotent, (1.5.3)
applies. Assembling the diagrams (1.3.5.2) and (1.5.3.2), we obtain a commu-
tative diagram:

Eλ
∼= - V0,−λ

∼= - E′′∇′′

−λ

Eλ ⊗ Ω

∇− id⊗ λ

?
- V0,−λ ⊗ Ω

θ

? ∼=- E′′∇′′

−λ ⊗ Ω.

−id⊗∇Γ·(Ω)

?

Now E′′
−λ ⊆ Ẽ0,−λ, and by definition

∇̃′ := idE ⊗∇′ = id⊗∇Γ·(Ω) + id⊗ (−λ)

in these degrees. The diagram shows that the map ∇− id⊗ λ : Eλ → Eλ ⊗ Ω
corresponds to the map −id ⊗∇′

Γ·Ω = −∇′ − id ⊗ λ. Thus ∇ corresponds to
−∇′, and we get the commutative diagram in (1). This diagram implies that
q′∗
∇
J∗E belongs to MICΛ′

∗ (P ′/R).
It follows from (1.5.2) that the map from the de Rham complex K ′′· of E′′ to
K̃· is a quasi-isomorphism. Lemma (1.5.3) implies that Hi

DR(E′′) = 0 if i > 0,
and since K ′′· → K̃· is a quasi-isomorphism, the same is true of Hi

DR(K̃·).
Lemma (1.5.3) also implies that the natural map E′′∇′′ ⊗R Γ·(Ω) → E′′ is an
isomorphism. Now E′′∇′′

is in fact an R[P ′]-module, and this isomorphism can
be rewritten as an isomorphism

E′′∇′′
⊗R[P ′] ⊗R[P ′]⊗R Γ·(Ω)→ E′′.

Tensoring with R[Λ] and using the fact that the map E′′∇′′ → Ẽ∇̃ is an iso-
morphism, we see that the map

Ẽ∇̃ ⊗R[P ′] ⊗R[P ′,Λ]⊗R Γ·(Ω)→ E′′ ⊗R R[Λ]

is an isomorphism. But by Proposition (1.3.7), the natural map

E′′ ⊗R R[Λ]→ Ẽ

is an isomorphism. Hence the map

Ẽ∇̃ ⊗R[P ′] ⊗J(P,Λ)→ Ẽ

is an isomorphism, proving the last statement of (2). The calculation of the
Higgs cohomology of (Ẽ, ∇̃′) is done in the same way as the de Rham coho-
mology. This completes the proof of (2), and (3) follows by symmetry.
Now suppose that (E,∇) ∈MICΛ

∗ (P/R) and let (E′,∇′) := q′
∇
∗ J

∗(E,∇). As
we have seen, (E′,∇′) ∈MICΛ′

∗ (P ′/R). By the last part of (2),

J(P,Λ)⊗ E′ ∼= Ẽ,
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and so q∗
∇′

(J(P,Λ) ⊗ E′) ∼= q∗
∇′
Ẽ ∼= E. This implies that the composite

MICΛ
∗ (P/R) → MICΛ′

∗ (P ′/R) → MICΛ
∗ (P/R) is isomorphic to the identity.

A similar argument works starting with MICΛ′

∗ (P ′/R). This completes the
proof of the theorem.

Proof of (1.4.8) Let (E,∇) be an object of MICΛ
∗ (P,C) and let (V, ρ) :=

V(E,∇). By construction, V is the C[P ′]-module q′∇∗ J∗(E,∇) of (1.5.1), and
ρ is the map induced by ρ̃ := idE⊗ρJ . Here ρJ is the action of π1(P ) on J(P,Λ),
which by (1.4.7) is idE ⊗ exp ∇̃′ = idE ⊗ exp θ. The isomorphism E → V of (1)
of (1.5.1) takes ∇′ to −∇, and so the action ρ of (1.4.8) agrees with the action
defined in (1.4.3). This proves (1) of (1.4.8), and (2) follows directly from
(1.5.1.2). Conversely, let (V, ρ) be an object of LΛ′

∗ (P ′), and Ṽ := V ⊗J(P,Λ).
Then the action of π1 on ṼΛ′=0 is unipotent. Its logarithm is the nilpotent Higgs
structure θ = −∇, and so by (1.4.4), qΛ

′,π1
∗ (Ṽ ) = Ṽ ∇ = E. By (1.4.4), the

Higgs cohomology of Ṽ is the same as the group cohomology, and so (1.4.8.3)
follows from (1.5.1.3).

Remark 1.5.4 A morphism of toric monoids P → Q induces a map ΩP/R →
ΩQ/R. A compatible morphism of exponential data is a commutative diagram

P - ΛP - ΩP/R

Q
?

- ΛQ
?

- ΩQ/R.
?

For example, if ΛP = P gp or k ⊗ P gp or R ⊗ P gp, there is an evident choice
of ΛP → ΛQ. Associated with such data are morphisms R[P,ΛP ]→ R[Q,ΛQ]
and J(P,ΛP ) → J(Q,ΛQ) and concomitant functors (with the subscripts on
the Λ’s omitted from the notation):

MICΛ
∗ (P/R) → MICΛ

∗ (Q/R)
HIGΛ

∗ (P/R) → HIGΛ
∗ (Q/R)

MHΛ
Λ′(P/R) → MHΛ

Λ′(Q/R)

and, when R = C,

LΛ
∗ (P )→ LΛ(Q).

It is easy to verify that the functors in (1.5.1) and (1.4.8) are compatible with
these base change functors.
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2 Formal and holomorphic germs

2.1 Exponents and the Logarithmic inertia group

Let X be a smooth, fine, and saturated idealized log analytic space. If x is a
point of X, let

Ix : = Hom(M
gp

X,x,Z(1))

ΩMx/C
:= C⊗Mgp

X,x

TMx/C
:= Hom(M

gp

X,x,C) ∼= C⊗ Ix.

The group Ix is called the logarithmic inertia group at x. It is the fundamental
group of the torus A∗

MX,x
, and TMx/C

is the space of invariant vector fields on
A∗
MX,x

.
It follows as in [12, 1.3.1] that there is a natural surjective map

Ω1
X/C(x)→ C⊗Mgp

X,x.

If (E,∇) is a coherent sheaf with integrable connection on X, let E(x) :=
Ex/mxEx be its fiber at x. Then there is a unique linear map ρx such that the
following diagram commutes:

E
∇- E ⊗ Ω1

X/C

E(x)
? ρx- E(x)⊗ ΩMx/C

?

It follows from the integrability of ∇ that the endomorphisms of E(x) defined
by evaluating ρx at any two elements of TMx/C

commute. Thus ρx defines a
TMx/C

-Higgs field on E(x), and E(x) becomes a module over the symmetric
algebra S·TMx/C

. Since E(x) is finite dimensional over C, it is supported at
a finite set of maximal ideals of this algebra, i.e., at a finite set of elements of
ΩMx

.

Definition 2.1.1 Let (E,∇) be a coherent sheaf with integrable connection on
X and let x be a point of X. Then the residue of (E,∇) at x is the map ρx
in the diagram above, and the exponents of (E,∇) at x are the negatives of the
elements in ΩMx/C

= C ⊗Mgp

X,x lying in the support of the C-TMx
module

defined by ρx.

To understand the choice of the sign in the definition of exponents, consider the
connection on the structure sheaf of the logarithmic affine line with ∇(1) :=
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λ ⊗ dt/t, where λ ∈ C. Then the corresponding C-TMx
-module, has support

at λ. On the other hand, the horizontal sections of the connection are the
constant multiples of t−λ, so it is −λ which appears as an “exponent.” Note
that formation of the residue is compatible with tensor products. In particular,
the set of exponents of the tensor product of two connections (E1,∇1) and
(E2,∇2) is the set of sums λ1 + λ2, with λi an exponent of Ei.
Our main local theorem gives an equivalence between the category of analytic
germs of log connections and the category of normalized homogeneous connec-
tions considered in §1. Fix a point x of X and let MX,x → Λ → ΩMx/C

be a
rigid set of exponential data for MX,x. Let MICΛ

coh(Xx) denote the category
of germs of coherent sheaves with integrable connection all of whose exponents
lie in Λ. This category is closed under extensions, tensor products, and duals
(because Λ is a group). If P → Λ → C ⊗ P gp is a rigid set of exponential
data for a toric monoid P , then the image Λ of Λ in C ⊗ P gp defines a set of
exponential data for P , and we sometimes write MICΛ

coh(Xx) for MICΛ
coh(Xx).

Theorem 2.1.2 Let P be an idealized toric monoid with rigid exponential data
Λ, let X be the log analytic space associated to AP, and let X̂v be the formal
completion of X at its vertex v. Use X and similar notation for AP ⊆ AP,
where P := P/P ∗. Then the evident functors form a 2-commutative diagram:

MICΛ
coh(P/C)

	�
�

�
�

� @
@

@
@

@R

MICΛ
coh(P/C)

A- MICΛ
coh(Xv)
?

�Ban MICΛ
coh(Xv/C)

@
@

@
@

@

C

R
MICΛ

coh(X̂v/C)

D

?

�B̂ MICΛ
coh(X̂v/C),

D

?

in which all the labeled arrows are equivalences of tensor categories, compatible
with De Rham cohomology.

The proof will occupy the rest of this section.

Remark 2.1.3 Let (E,∇) be an object of MICΛ
coh(Xv/C) and let (E′,∇) be

the corresponding object of MICΛ
coh(P/C). Then (E,∇) and (E′,∇) have

the same restriction to X̂, and in particular they have the same residue and
exponents. That is, the residue ρ of E can be identified with the endomorphism
of E′/P+E′ induced by ∇. Since ∇ is normalized, {λ : (E′/P+E′)λ 6= 0} is
the same as the support of the TP/C-Higgs module defined by ρ. Note that this
set is just the set of degrees of any minimal set of generators for E′/P+E′. Let
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(V, ρ) be the equivariant Riemann-Hilbert transform (1.4.3) of (E′,∇). Since
the degrees of V are the negative of the degrees of E′, it follows that the set of
exponents of (E,∇) is exactly the set of minimal degrees of V .

2.2 Formal germs

We begin with the functor C; without loss of generality we may and shall as-
sume that P = P . Then v corresponds to the maximal ideal of C[P ] generated
by P+, and the completion of C[P ] at this ideal can be identified with the
formal power series ring C[[P ]]. This is the set of functions a : P → C, where
for a, b ∈ C[[P ]], (a+ b)p := ap + bp and (ab)r :=

∑
{apbq : p+ q = r}. To see

that the sum is finite, choose a local homomorphism φ : P → N, and observe
that each {p ∈ P : φ(p) ≤ n} is finite. In fact, this set is the complement of
an ideal Kn of P , and the set of such ideals {Kn : n ∈ N} is cofinal with the
set of powers of P+. If S is a free P set and V is a finitely generated S-graded
C[P ]-module, the P+-adic completion V̂ of V can be identified with the prod-
uct

∏
{Vs : s ∈ S}. The action of P on S defines a partial ordering on S: s ≤ t

if there exists p ∈ P with p+ s = t; such a p is unique if it exists, and we write
t−s for this p. Then if a ∈ C[[P ]] and v ∈

∏
Vs, (av)t :=

∑
at−svs. The P -set

Λ ⊆ C⊗ P gp is only potentially free, but if V is a finitely generated Λ-graded
C[P ]-module, there exists a finitely generated free P -subset S of Λ such that
Vλ = 0 for λ 6∈ S, and we can identify V̂ with

∏
{Vs : s ∈ S} ∼=

∏
{Vλ : λ ∈ Λ}

It is now easy to see that the functor C is compatible with cohomology, i.e.,
that if (E,∇) is an object of MICΛ

coh(P/C), the natural map

(E ⊗ Ω·X/C)0 → Ê ⊗ Ω·X/C

from the degree zero part of its de Rham complex to its completion is a quasi-
isomorphism. Indeed, Ω1

X/C,v
∼= OX,v⊗CΩP/C, and Ê⊗Ω·X/C can be identified

with the product:
∏
λ(E⊗Ω·P/C)λ. For each λ, the degree λ part of the complex

E ⊗Ω·P/C can be identified with the Higgs complex of the TP/C-Higgs module
(E,∇λ). Since (E,∇) is normalized (1.2.3), this complex is acyclic whenever
λ 6= 0, by (1.5.2). Since infinite products in the category of vector spaces
commute with cohomology, the cohomology of the product identifies with the
cohomology of the degree zero part of E⊗Ω·X/C, as required. Since the functor
C is compatible with the formation of internal Hom’s, it follows that it is also
fully faithful.
It remains to prove that C is essentially surjective. Let (E,∇) be an object of
MICΛ

coh(X̂v/C). The connection

∇ : E → E ⊗C[P ] Ω1
X/C

∼= E ⊗C ΩP/C

can be regarded as a C-TP/C-module structure on E, which is easy to ana-
lyze if E is finite dimensional over C. Indeed, such an E admits a Jordan
decomposition

(E,∇) ∼= ⊕{(Eλ,∇λ) : λ ∈ Ω},
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where each (Eλ,∇λ) has support in λ, and Lemma (1.3.4) applies. In fact,
Eλ = 0 unless λ ∈ Λ by (2.2.1) below. Thus E ∼= ⊕λ(Eλ,∇λ) is an object of
MICΛ

coh(P/C) and it is evident that its formal completion at v is (E,∇). This
shows that any such (E,∇) is in the essential image of C.
For the general case, we use a limit argument and the following lemma.

Lemma 2.2.1 Let (E,∇) be an object of MICΛ
coh(X̂v/C) such that E is finite

dimensional over C. Then the support of (E,∇) as a TP/C-Higgs module is
contained in the P -subset S of C⊗ P gp generated by the support of (E(v),∇),
and in particular is contained in Λ. If K is an ideal of P , then the support of
KE is contained in the K-translate of the support of E.

Proof: If K is any ideal of P , then the ideal C[K] of C[P ] it generates is
invariant under ∇ and defines an element of MICΛ

coh(P/C). Since ∇ek =
ek ⊗ dk, the support of the corresponding Higgs module is the image of K
in Λ. Since there is a surjective map C[K] ⊗ E → KE, the support of KE
is contained in the support of C[K] ⊗ E , which is the K-translate of the
support of E. This proves the second statement. Since E has finite length, it
is annihilated by P+n for some n ∈ Z+, and we prove the first statement by
induction on n. If n = 1, E ∼= E/P+E = E(v) and the result is trivial. In the
general case, note that P+E is invariant under the connection and annihilated
by P+n−1, so the induction hypothesis implies that the support of P+E is
contained in the P -subset of C⊗P gp generated by the support of P+E/P+2E.
As we have just seen, this is contained in P++S ⊆ S. Then the exact sequence
0→ P+E → E → E/P+E → 0 shows that the support of E is contained in S
as well.

Now let (E,∇) be any object of MICΛ
coh(X̂v/C). Choose a local homomor-

phism φ : P → N. Then φ extends uniquely to a C-linear map C ⊗ P gp → C
which we also denote by φ. Let Kn := {p ∈ P : φ(p) ≥ n}, and let
En := E/KnE. If n′ ≥ n there is an exact sequence of modules with con-
nection

0→ KnE/Kn′E → En′ → En → 0.

Each of these terms is finite dimensional over C, and the C-TP/C-module it
defines has support in Λ. For every λ, the corresponding sequence:

0→ (KnE/Kn′E)λ → En′,λ → En,λ → 0

is again exact. Let S be the support of E/P+E and choose m ∈ Z so that m <
Re(φ(s)) for all s ∈ S. Suppose (KnE/Kn′E)λ 6= 0. Then by lemma (2.2.1),
λ can be written as p+ s with p ∈ Kn and s ∈ S, and

Re(φ(λ)) = φ(p) +Re(φ(s)) > n+m.

Thus if n ≥ Re(φ(λ))−m, (KnE/Kn′E)λ vanishes and the map En′,λ → En,λ
is an isomorphism. Let Eλ be the inverse limit, i.e., the stable value of En,λ for
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n large. Then ∇ maps Eλ to Eλ, and ⊕(Eλ,∇λ) is an object of MICcoh(P/C),
whose completion at the vertex is (E,∇).
This completes the proof that C is essentially surjective, and it follows from
the diagram that the same is true of D.
The fact the arrow B̂ is an equivalence follows from the following slightly
stronger result, which is a consequence of the fact there is no log structure
in the transverse direction.

Lemma 2.2.2 Let X∨ denote the formal completion of X along X. Then the
natural functor

MICΛ
coh(X

∨/C)→MICΛ
coh(X/C)

is an equivalence, compatible with cohomology.

Proof: Since X/C is smooth, the category MICΛ
coh(X/C) is equivalent to a

full subcategory of the category of coherent crystals on X/C, and the same
holds for X/C [6, 6.2]. Since X → X is a strict closed immersion, the fact
that the above functor is an equivalence follows formally from the properties
of crystals: X∨ is a limit of strict infinitesimal thickenings of X, and hence a
crystal on X has a natural value on X∨, and in fact also on any strict infinites-
imal thickening of X∨. To check the result on De Rham cohomology, one can
work locally, using the fact that X∨ looks locally like X × Spf C[[t1, . . . tn]],
and argue as in the classical case.

Since P is saturated, P
gp

is a finitely generated free abelian group, and so
the exact sequence 0 → P ∗ → P gp → P

gp → 0 splits. Any splitting P
gp →

P gp automatically maps P to P and induces a section of the map X → X.
This implies that the functor MICΛ

coh(P/C) → MICΛ
coh(P/C) is essentially

surjective. Since B̂ is an equivalence, it follows from the diagram that D is also
essentially surjective.

2.3 Convergent germs

Our first task is to establish a convenient description of the ring of germs of
analytic functions at the vertex of AP as a subring C{P} of C[[P ]].

Proposition 2.3.1 Let P be a fine sharp monoid, let v be the vertex of A∗anP ,
and let T be the (necessarily finite) set of irreducible elements of P .

1. For δ ∈ R+, let

Uδ := {x ∈ AP(C) : |x(t)| < δ for all t ∈ T}.

Then {Uδ : δ ∈ R+} forms a basis for the system of neighborhoods of v
in A∗anP (C) in the usual complex topology.
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2. If φ is a local homomorphism P → N and α :=
∑
p apep ∈ C[[P ]], then

α converges in some neighborhood of v if and only if the set { log |ap|
φ(p) : p ∈

P+} is bounded above.

Proof: First suppose that P = Nn. Then X = Cn, v is the origin, Uδ is the
polydisc about v of radius δ, and (1) is clear. If P is any fine sharp monoid, then
T is finite and generates P as a monoid, and hence a bijection {1 . . . n} → T
induces a surjective homomorphism Nn → P and a closed immersion AP → An.
With respect to this closed immersion, Uδ is just the intersection of AP(C) with
the polydisc of radius δ about v. This proves (1) in general.
Suppose that α =

∑
p apep, c ∈ R, and c ≥ φ(p)−1 log |ap| for every p ∈ P+.

Choose ε > 0, let λt := −(c + ε)φ(t) for each t ∈ T , and choose a positive
number δ such that δ < eλt for all t. Then Uδ is an open neighborhood of v in
X, and if x ∈ Uδ, log |x(t)| < λt for all t. Any p ∈ P can be written p =

∑
ntt.

It follows that for x ∈ Uδ,

log |apx(p)| = log |ap|+ log |x(p)|
≤ cφ(p) + log |x(p)|
≤

∑
t

nt(cφ(t) + log |x(t)|)

≤
∑
i

nt(cφ(t) + λt)

≤
∑
t

nt(−εφ(t))

≤ −εφ(p)

Thus |apx(p)| ≤ rφ(p), where r := e−ε < 1. As is well known, {p : φ(p) = i} has
cardinality less than Cim for some C and m, so the set of partial sums of the
series

∑
p |apx(p)| is bounded by the set of partial sums of the series

∑
i Ci

mri.
Since this latter series converges, so does the former.
Suppose on the other hand that {φ(p)−1 log |ap| : p ∈ P+} is unbounded. For
c ∈ R+ , define xc : P → C by xc(p) := c−φ(p). Then xc ∈ AP(C), and if δ > 0
and c is chosen large enough so that log c > (φ(t))−1(− log δ) for all t ∈ T ,
then xc ∈ Uδ. For every such c, there are infinitely many p ∈ P+ such that
|ap| > (c+ 1)φ(p). For any such p,

|apxc(p)| ≥ (1 + c)φ(p)c−φ(p) = (1/c+ 1)φ(p) ≥ 1,

so the series
∑
p apxc(p) cannot converge.

Our next task is an existence and uniqueness result for formal and convergent
solutions to certain differential equations. Recall that if X = AP, a homomor-
phism P → N defines an invariant vector field on X.



40 Arthur Ogus

Proposition 2.3.2 Let P be a sharp toric monoid, let X := AP, let v be
its vertex, and let (E,∇) be the germ of a coherent sheaf with integrable log
connection on Xan at v. Suppose that φ : P → N is a local homomorphism
such that φ(λ) < 0 for every exponent λ of E at v. 1 Then ∇φ acts bijectively
on E and on Ê.

Let us first discuss the formal case. It suffices to prove that for each n ∈ N,
∇φ induces an automorphism of En := E/KnE, where Kn := {p : φ(p) ≥ n}.
Each En is finite dimensional over C and ∇ can be viewed as a TP/C-Higgs field
on En. The support of En as a TP/C-Higgs module is a finite subset of ΩP/C.
By (2.2.1), its support is contained in the sub P -subset S of Λ generated by the
support of the TP/C-Higgs module E/P+E, i.e., by the negative of the set of
exponents. Thus φ(s) > 0 for every s ∈ S, and hence ∇φ is an automorphism
of En.
To deal with convergence we must be more explicit. We have a commutative
diagram

E
∇φ - E

Ê

? ∇̂φ - Ê

?

It follows that ∇φ : E → E is injective, and it remains to prove that it is
surjective.
Let (v1, . . . vn) be a subset of E whose reduction modulo P+E forms a basis for
E/P+E, and let V ⊆ E be its C-linear span. Then V generates E as a module
over the ring O := OXan

v
. For each i, ∇φ(vi) ∈ E, and hence can be written

(not necessarily uniquely) as a sum:
∑
aijvj , with aij ∈ O. Let A denote the

n× n matrix
(
aij

)
, and write A as a formal sum

∑
{Aqeq : q ∈ P}, where Aq

is an n× n matrix in C. For any v ∈ V ,

∇φ(v) =
∑
q

Aq(v)eq

In particular, A0 is the matrix of the endomorphism induced by∇φ on E/P+E.
The eigenvalues of this endomorphism are among those complex numbers of the
form φ(s) for s in the support of (E/P+E,∇). By hypothesis, φ(p)+φ(s) 6= 0,
for every p ∈ P and s in this support. It follows that A0 + φ(p) is invertible
for every p ∈ P .

1One can show using a Baire category argument that a φ as in (2.3.2) exists if and only
if the set of exponents does not meet P .
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Any element v of Ê can be written as a formal sum v =
∑
vqeq, with vq ∈ V .

Then:

∇φ(v) =
∑
q

(
∇φ(vq)eq + vq〈φ, deq〉

)
=

∑
q

∑
q′

Aq′(vq)eq′eq +
∑
q

φ(q)vqeq

=
∑
p

( ∑
q+q′=p

Aq′(vq)
)
ep +

∑
p

vpφ(p)ep

=
∑
p

wpep,

where
wp := A0(vp) + φ(p)vp +

∑
q<p

Ap−q(vq).

Recall that A0 + φ(p) is invertible; let Bp be its inverse. Then the above
equation becomes:

Bp(wp) = vp +Bp
∑
q<p

Ap−q(vq).

In other words, if w =
∑
wpep, then the coefficients of v = ∇̂−1

φ (w) are given
recursively by the formula:

vp = Bp(wp)−Bp
∑
q<p

Ap−q(vq). (2.3.1)

Note that the sum is finite since there are only finitely many q with q < p. We
have to prove that if the series

∑
wpep converges, so does the series

∑
vpep.

Since φ is local, there are only finitely many p with φ(p) ≤ 2||A0||, and we
can find a constant M ≥ 2 such that ||Bp|| ≤ Mφ(p)−1 for all these p. Let
ψ := φ/M . We claim that ||Bp|| ≤ ψ(p)−1 for all p ∈ P . This is true by our
choice of M if φ(p) ≤ 2||A0||. If on the other hand φ(p) > 2||A0||, then

||Bp|| = || (φ(p) +A0)
−1 ||

= φ(p)−1||1− φ(p)−1A0 + φ(p)−2A2
0 − · · · ||

≤ φ(p)−1(1 + 1/2 + 1/4 + · · · )
≤ 2φ(p)−1

≤ ψ(p)−1.

Since A and w are convergent there exists a positive real number s such that
||Ap|| and ||wp|| are less than sψ(p) for all p. Moreover, since ∇φ is C-linear, we
may without loss of generality assume that ||w0|| ≤ ||B0||−1, so that ||v0|| ≤ 1.
Let yp := ||vps−ψ(p)|| for p ∈ P . It will suffice to show that there exists a t
such that yp ≤ tψ(p) for all p.
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By the formula (2.3.1),

yp ≤ ||Bp||||wp||s−ψ(p) + ||Bp||
∑
q<p

||Ap−q||s−ψ(p−q)||vq||s−ψ(q)

Hence
yp ≤

1
ψ(p)

+
1

ψ(p)

∑
q<p

yq. (2.3.2)

Let ε be the minimum of ψ(P+), and choose c so that cε > 2. Then let a0 := 1
and for p ∈ P+ define ap inductively by setting

ap := c
∑
q<p

aq(1−
ψ(q)
ψ(p)

).

If q < p, ψ(p)− ψ(q) ≥ ε. Hence if p is any element of P+,

ap =
∑
q<p

caq(
ψ(p)− ψ(q)

ψ(p)
)

≥
∑
q<p

cεaq
ψ(p)

≥
∑
q<p

2aq
ψ(p)

≥
∑
q<p

aq
ψ(p)

+
∑
q<p

aq
ψ(p)

≥ 1
ψ(p)

+
1

ψ(p)

∑
q<p

aq

Note that y0 = ||v0|| ≤ 1 = a0. Then it follows by induction on p from the
previous and (2.3.2) that yp ≤ ap for all p. Thus it suffices to prove that there
exists a t such that ap ≤ tφ(p) for all φ, i.e., that the series

∑
apep in fact lies

in R{P}. This will follow from the following lemma.

Lemma 2.3.3 Let P be a fine sharp monoid, let φ : P → (R≥,+) be a local
homomorphism, and let c be any positive real number. Define a : P → R
inductively setting a(0) = 1, and, if p ∈ P+,

ap = c
∑
q<p

aq

(
1− φ(q)

φ(p)

)
Then

∑
apep belongs to the ring R{P} of germs of convergent elements of

R[[P ]], and is in fact independent of φ.

Proof: Let
f :=

∑
q∈P+

eq ∈ C[[P ]],
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Evidently f(x) converges for all x in U1 = {x : q(x) < 1 for all q ∈ P+}, hence
so does g := exp cf . Write

g :=
∑
p∈P

bpep.

Then

dg = cgdf∑
p∈P+

bpepdp = c
(∑
q∈P

bqeq

)( ∑
q′∈P+

eq′dq
′
)

=
∑

q∈P,q′∈P+

cbqeq′+qdq
′

=
∑
p∈P+

(∑
q<p

cbqd(p− q)
)
ep

Thus

bpdp =
∑
q<p

cbq(dp− dq)

bpφ(p) =
∑
q<p

cbq(φ(p)− φ(q))

Hence ap = bp, and therefore
∑
apep lies in R{P}.

We next show that the functors D and D are compatible with cohomology.
Since this implies that they are fully faithful, this will complete the proof of
the theorem. Since D is a special case of D, the following result suffices.

Proposition 2.3.4 If (E,∇) is an object of MICcoh(Xv/C), then the natural
map

E ⊗ Ω·X/C → Ê ⊗ Ω·X/C
is a quasi-isomorphism.

Proof: Since P is a toric monoid, its unit group is a finitely generated free
group, say of rank r, and there is an isomorphism P ∼= P ⊕ Zr. The vertex v
of X is the point sending every element of P ∗ to 1 and every element of P

+

to 0. Let Q := Nr ⊕ P , let X ′′ := Spec(P → C[Q]), and let v′′ be the point
of X ′′ sending Q+ to zero. Finally, let X ′ := AQ, and let f : X ′ → X ′′ be the
map which is the identity on underlying analytic spaces and the inclusion on
log structures. Thus

X ∼= Spec(P → C[P ][t1, t−1
1 , . . . tr, t

−1
r ]) ∼= X ×Gr

m

X ′ ∼= Spec(P ⊕Nr → C[P ][x1, . . . xr]) ∼= X × ANr

X ′′ ∼= Spec(P → C[P ][x1, . . . xr]) ∼= X × ANr
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The homomorphism sending xi to ti− 1 and which is the identity on P defines
a strict open immersion of log schemes X → X ′′ sending v to v′′. Replacing
X ′ by a neighborhood of the vertex v′ of X ′, we find a map X ′ → X which is
an isomorphism on underlying analytic spaces and which sends v′ to v. Thus
we may and shall identify the stalk of E at v with the stalk of its pullback to
X ′ at v′. (In other words, we have added some log structure to X to get X ′.)

Lemma 2.3.5 For each i, the stalk at v of natural map

E ⊗ ΩiX/C → E ⊗ ΩiX′/C

is injective. Furthermore, as submodules of Ê ⊗ ΩiX′/C,

E ⊗ ΩiX/C = (Ê ⊗ ΩiX/C) ∩ (E ⊗ ΩiX′/C)

at v.

Proof: We can check the injectivity statement after passing to formal com-
pletions. Recall from (2.2.2) that, since E is a crystal on X, there is a coherent
sheaf E on X such that Ê ∼= π∗Ê, where π : X → X is the map induced by
our chosen splitting of P → P . Let Y := ANr , so that X ′ ∼= X × Y and
X ∼= X × Y near v. Then Ω1

X/C
∼= Ω1

X/C
⊕Ω1

Y /C and Ω1
X′/C

∼= Ω1
X/C

⊕Ω1
Y/C;

furthermore all these sheaves are free at v. It follows that Ê and the cok-
ernel of the map ΩiX/C → ΩiX′/C are tor-independent. This proves the in-
jectivity. Note that ΩiX/C and ΩiX′/C are free, and xΩiX′/C ⊆ ΩiX/C, where

x := x1 · · ·xr. If e ∈ Ê and xe ∈ E, then it is clear from (2.3.1) that e ∈ E.
Since X ′ and X have the same underlying analytic structure, it follows that
(Ê ⊗ ΩiX/C) ∩ (E ⊗ ΩiX′/C) = E ⊗ ΩiX/C.

Choose a local homomorphism φ : Q → N and for n ∈ N let Kn := {q ∈
Q : φ(q) ≥ n}. Let Ei := Ev ⊗ ΩiX/C and let Ei′v := Ev ⊗ ΩiX′/C. Then E·′

is a complex, containing subcomplexes E· and KnE
·′ for each n. There is a

commutative diagram of exact sequences of complexes:

0 - E· ∩KnE
·′ - E· - E·n - 0

0 - Ê· ∩KnÊ
·′

?
- Ê·

?
- Ê·n

?
- 0

In this diagram, the quotient E·n is contained in E·′n := E·′/KnE
·′ and anni-

hilated by a power of the maximal ideal at v. Thus, the arrow on the right is
an isomorphism of complexes. Our goal is to prove that the central arrow is a
quasi-isomorphism, and so it will suffice to prove that the arrow on the left is
a quasi-isomorphism. In particular, the following lemma suffices.
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Lemma 2.3.6 With the above notation, suppose that n > φ(λ) for every expo-
nent λ of E(v′) on X ′. Then E· ∩KnE

·′ and Ê· ∩KnÊ
·′ are acyclic.

Proof: The homomorphism φ : Q→ N induces a homomorphism ΩQ/C → C,
which can be regarded as an equivariant vector field on X ′. It also induces for
each i a homomorphism ΩiQ/C → Ωi−1

Q/C, by interior multiplication. These maps
extend to C[Q]-linear maps E ⊗ ΩiX′/C → E ⊗ Ωi−1

X′/C sending E ⊗ ΩiX/C to
E ⊗ Ωi−1

X/C and KnE ⊗ ΩiX′/C to KnE ⊗ Ωi−1
X′/C. Let κ := dρ + ρd, i.e., the

Lie derivative with respect to φ. Then κ defines a morphism of complexes
E·′ → E·′ which preserves the subcomplexes E· and KnE

·′ and (hence) passes
to the completions. By construction, κ is homotopic to zero. So to prove the
complexes are acyclic, it suffices to prove that κ is an isomorphism on each of
them.
Note that if q ∈ Q,

κ(eq) = dρ(eq) + ρd(eq) = ρ(eqdq) = φ(q)eq.

Furthermore, κ is a derivation, i.e.,

κ(η ∧ ω) = κ(η) ∧ ω + η ∧ κ(ω)

if η ∈ E ⊗ Ω·X/C and ω ∈ ΩiX/C. If ω is equivariant, i.e., if it lies in ΩiQ/C,
κ(ω) := dρω + ρdω = 0. Thus if e ∈ E and ω ∈ ΩiQ/C, κ(e⊗ ω) = ∇φ(e)⊗ ω.
In other words, viewed as a map

κ : E ⊗C ΩiQ/C → E ⊗C ΩiQ/C,

κ := ∇φ⊗ id. Lemma (2.3.2) implies that ∇φ acts bijectively on E and Ê, and
hence κ induces an automorphism of E ⊗ Ω·X′/C and of Ê ⊗ Ω·X′/C.
SinceKnE and its quotients also satisfy the hypothesis of (2.3.2), κ also induces
automorphisms of KnE

·′ and of KnE
·′/Kn′E

·′ whenever n′ ≥ n. The image of
E· ∩KnE

·′ in KnE
·′/Kn′E

·′ is a finite dimensional subspace invariant under
κ, and hence κ also acts as an automorphism of this subspace. Taking the limit
over n′, we see that κ induces an automorphism of Ê· ∩KnÊ

·′. It follows that
κ is injective on E· ∩KnE

·′. If e ∈ E· ∩KnE
·′, there is a unique ê ∈ Ê· ∩KnÊ

·′
such that κ(ê) = e. But e ∈ KnE

·′ and so there is a unique f ∈ KnE
·′ such

that κ(f) = e. Thus

ê = f ∈ Ê· ∩ E·′ ∩KnÊ
·′ = E· ∩KnE

·′.

This proves that κ is an isomorphism of E· ∩KnE
·′ and completes the proof

of the lemma.
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3 Xlog and the global Riemann-Hilbert correspondence

3.1 Xlog and its universal covering

If X is an idealized log scheme of finite type over C, let Xan or Xan denote
the corresponding log analytic space. Let us say that an idealized log analytic
space X is ideally log smooth if it admits a covering by open subsets each of
which is isomorphic to an open subset of AanP,K for some fine idealized monoid
(P,K). For such spaces, the sheaf of ideals K can be recovered from the
log structure as the inverse image in MX of 0. We let S1 be the unit circle,
i.e., {z ∈ C : |z| = 1} and R≥ the multiplicative monoid of nonnegative real
numbers. Thus the multiplication map R≥×S1 → C defines a log structure on
C, and we let ξlog denote the corresponding log scheme Spec(R≥ × S1 → C).
Note that this log scheme is not integral or even coherent.
Kato and Nakayama have constructed in [7] a commutative diagram of ringed
spaces:

X∗
an

jlog- Xlog

@
@

@
@

@

j

R
Xan

τ

?

We refer to [7] for the definition, but recall that the set underlying Xlog is the
set of C-morphisms of log schemes ξlog → X and that τ is the obvious map
which forgets the log structure. This map is proper, and the fiber over a point
x is a torsor under the group Hom(MX,x,S1). Since X is saturated, this space
is (noncanonically) isomorphic to (S1)r(x), where r(x) is the rank of M

gp

X,x.
The fundamental group Ix of the fiber τ−1(x) (the logarithmic inertia group
at x) can be canonically identified with Hom(M

gp

X,x,Z(1)). Since this group is
abelian and the fiber is connected, the choice of base point can be ignored.
When X = AP,K, the space Xlog has a convenient explicit description. If P
is a monoid, let C(P ) denote the set of morphisms of monoids ρ : P → R≥,
with the structure of topological monoid inherited from that of R≥. If K is
an ideal in P , let C(P,K) be the set of those ρ ∈ C(P ) sending K to 0. This
is a closed submonoid of C(P ), and in fact is an ideal in the monoid C(P ).
Let S(P ) denote the set of morphisms of monoids σ : P → S1, or, equivalently,
P gp → S1, with its structure of topological group. If P is toric, P gp is a finitely
generated free abelian group, so S(P ) is a torus. Then if X = AP,K, there is
a canonical isomorphism Xlog

∼= C(P,K) × S(P ). When K is a proper ideal,
the map c0 : P → R≥ sending P ∗ to 1 and P+ to 0 is a point of C(P,K), and
the pair (c0, 1) is a point of Xlog lying over the vertex of X, which we call the
vertex of Xlog.
It will be useful for us to work with an explicit universal cover of Xlog

when X = AP,K. Let R(1) ⊆ C denote the set of purely imaginary num-
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bers, which forms a topological group under addition, and let Y (P ) denote
the set of homomorphisms of abelian groups from P gp to R(1). Finally, let
ÃlogP,K := C(P,K) × Y (P ), with its natural structure of a topological monoid.
If K is a proper ideal call ṽ := (c0, 0) the vertex of ÃlogP,K .

Proposition 3.1.1 Let K be a proper ideal in a toric monoid P and let X :=
AP,K and X̃ log := ÃlogP,K . Then the map

ζ : X̃ log = C(P,K)× Y (P )→ C(P,K)× S(P ) = Xlog : (ρ, y) 7→ (ρ, exp ◦y)

is a universal covering sending the vertex of X̃ log to the vertex of Xlog, with
covering group canonically isomorphic to π1(P ) := Hom(P gp,Z(1)). When P
is a group, there is a natural isomorphism X̃ log ∼= VΩanP , under which the
covering map ζ corresponds to the covering map exp defined at the beginning
of section (1.4).

Proof: It is clear that id × exp is a covering map taking the vertex to the
vertex. The exact sequence 0 → Z(1) → R(1) → S1 → 0 induces an exact
sequence

0→ π1(P )→ Y (P )→ S(P )→ 0,

and so the covering group of ζ is canonically isomorphic to π1(P ). To finish
the proof, it will suffice to show that ÃlogP,K is contractible. Choose a local
homomorphism δ : P → N. Then for any t ∈ [0, 1], tδ defines a homomorphism
P → R≥ and so is a point of C(P ). (Here we are using the convention that
00 = 1.) Consider the continuous map

ÃlogP,K ×I → ÃlogP,K : (x, t) 7→ xt (3.1.1)

sending (x, t) := ((ρ, y), t) to xt := (ρttδ, ty). When t = 1, the map x 7→ xt
is the identity, and when t = 0, it is the constant map to the vertex, since
0δ(p) is 1 if p ∈ P ∗ and 0 otherwise. If P is a group, then each element
c : P → R≥ of C(P ) factors through R+, and so we can define c̃ : P → R
to be log ◦c. Then C(P ) can be identified with Hom(P,R) and X̃ log with
Hom(P,R)×Hom(P,R(1)) ∼= Hom(P,C) = VΩanP . With this identification, ζ
corresponds to exp.

The complement p of each face F of P not meeting K is a prime ideal of P
containing K and defines a closed log subscheme of AP,K whose underlying
scheme is isomorphic to AF. Let Xp or XF denote this log scheme; in fact
XF
∼= Spec(P → C[F ]), where P → C[F ] is the obvious one on F and kills

p. If x is a point of the dense open subset X∗
F = A∗F of XF , the map P →

MX,x induces an isomorphism P/F → MX,x. Thus the family of faces F not
meeting K defines a canonical stratification of AP,K on which the log structure
is constant. We call this stratification, as well as the stratification it induces
by pullback to Xlog and its universal cover, the canonical log stratification. For
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each F , τ−1(X∗
F ) is the set of (ρ, σ) ∈ C(P,K)×S(P ) such that ρ−1(R+) = F .

This space is homotopy equivalent to all of Xlog, and the fiber over a point x
is isomorphic to S(P/F ). In particular, Ix ∼= Hom(P/F,Z(1)), and there is an
exact sequence:

1→ Ix → π1(X
log
F )→ π1(X∗

F,an)→ 1.

Note that these strata are preserved by the contraction (3.1.1) above. That is,
if x ∈ X̃ log∗

F , then xt ∈ X̃ log∗
F for all t > 0.

The following result may help explain the geometric significance of the con-
struction of τX : Xlog → Xan: it can be regarded as a compactification of the
inclusion X∗

an → Xan which doesn’t change its local homotopy type.

Theorem 3.1.2 Suppose that X/C is a fine, smooth, and saturated log scheme
(so KX = ∅.) Then the map jlog : X∗

an → Xlog is aspheric. That is, any point
z of Xlog has a basis of neighborhoods U such that j−1

log(U) is contractible.
Consequently:

1. There are natural isomorphisms Z ∼= Rjlog∗Z, and Rτ∗Z ∼= Rj∗Z.

2. If V is a locally constant abelian sheaf on X∗
an, then jlog∗V is locally

constant on Xlog and Rijlog∗V = 0 for i > 0.

Proof: This question is local in a neighborhood of z in Xlog, and hence also
in a neighborhood of its image x in X. Since X/C is smooth, by [6, 3.5] there
exists a toric monoid P and a strict étale map f : X → AP. Thus the theorem
follows from the following lemma, which applies also in the idealized case.

Lemma 3.1.3 Let K be a proper ideal in a toric monoid P , let X := AP,K and
let z be a point of Xlog lying over a point x of X. Then z has a cofinal system
of open neighborhoods U such that for each face F of P such that x ∈ XF , the
intersection of U with the stratum τ−1(X∗

F ) is contractible.

Proof: If z = (ρ, σ), then G := ρ−1(R+) is the face of P corresponding to
the log stratum containing x. Then x ∈ X∗

G ⊆ XF , G ⊆ F , and X∗
G and X∗

F

are contained in XPG
, where PG is the localization of P by G. Thus without

loss of generality we may replace P by PG. Then x lies in the minimal orbit
XP∗ . Since this orbit and its inverse image in Xlog are homogeneous, we may
as well assume that z is the vertex v of Xlog.
Fix a splitting of P → P and choose finite sets of generators S+ for P and S∗ for
P ∗. For each ε > 0, let Cε(P,K) be the set of ρ ∈ C(P,K) such that ρ(s) < ε
for s ∈ S+ and |ρ(s)− 1| < ε for s ∈ S∗. Similarly, let Sε(P ) denote the set of
σ ∈ S(P ) such that |σ(s)−1| < ε for all s ∈ S, and let Uε := Cε(P,K)×Sε(P ).
Then the family of these Uε for ε > 0 is a basis for the set of neighborhoods
of v. If F is a face of P not meeting K, the inverse image of XF in Xlog can
be identified with C(F )× S(P ). Since F is a face of P , P ∗ = F ∗, the splitting
P ∼= P ∗⊕P induces a splitting F ∼= F ∗⊕F , and S+∩F is a set of generators for
F . Then the intersection of τ−1(XF ) with Uε becomes Cε(F )×Cε(F ∗)×Sε(P ),
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where Cε(F ) is the set of ρ : F → R≥ such that ρ(s) < ε for all s ∈ F ∩ S+

and Cε(F ∗) is the set of homomorphisms F ∗ → R≥ such that |ρ(s) − 1| < ε
for s ∈ S∗. Then τ−1(X∗

F ) ∩ Uε is C∗
ε (F ) × Cε(F ∗) × Sε(P ), where C∗

ε (F ) is
the set of ρ ∈ Cε(F ) which factor through F

gp
. Thus C∗

ε (F ) is contained in
the set C∗(F ) of homomorphisms F

gp → R+. Choosing a basis (f1, . . . fn)
for the finitely generated free abelian group F

gp
and using the topological

isomorphism log : R+ → R, we may identify C∗(F ) with the Euclidean space
E := Rn. Then each s ∈ S+ ∩ F can be written as a linear combination of
the elements fi and defines an element ŝ in the dual of E. For each s, the set
Es := {e ∈ E : ŝ(e) < log ε} is convex. Thus C∗

ε (F ) becomes identified with the
intersection of the convex subsets Es : s ∈ S+ ∩ F , which is therefore convex,
hence contractible. Since Cε(F ∗) and Sε(P ) are evidently also contractible if
ε < 1, the same is true of Uε ∩ τ−1(X∗

F ).

3.2 Clog
X and logarithmic local systems

We shall use the space Xlog to globalize the local classification (2.1.2) of log
connections, as explained in the introduction. Our first task is to give a more
precise formulation of the global Riemann-Hilbert correspondence which takes
into account the fact that the sheaf MX is not constant. This will require the
notion of cospecialization for certain constructible sheaves.
We begin by recalling the simple case of sheaves on intervals. Let I = [0, 1]
be the closed unit interval and let F be a sheaf on I. If F is constant, then
for any connected open subset U of I, the restriction map F (I)→ F (U) is an
isomorphism. Hence for any a, b ∈ I, the maps F (I) → Fa and F (I) → Fb
are isomorphisms, and so there is a canonical isomorphism Fa → Fb. More
generally, suppose only that the restriction of F to (0, 1] is constant. Then if
a > 0, the restriction mapping F ((0, 1]) → F ((0, a)) is bijective. Since F is a
sheaf, the sequence

F (I) - F ((0, 1])× F ([0, a)) -- F ((0, a))

is exact, and it follows that the map F (I)→ F ([0, a)) is an isomorphism. Since
this is true for all a > 0, the map F (I) → F0 is also an isomorphism. Hence
there is a natural map

cosp0,b : F0

ρ−1
I,0- F (I)

ρI,1- Fb (3.2.1)

for any b ∈ [0, 1]. Even more generally, suppose F is a sheaf on [0, 1] and that
for some c ∈ (0, 1) the restrictions of F to (0, c] and to [c, 1] are locally constant.
Then they are constant, and since {(0, c], [c, 1]} is a locally finite closed cover
of (0, 1], it follows that the restriction of F to (0, 1] is also constant. Hence for
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any b ∈ [c, 1] there is a commutative diagram

F0

cosp0,c - Fc

@
@

@
@

@
cosp0,b

R
Fb

cospc,b

?

Now let x and y be points in a topological space X and let F be a sheaf on
X. By an F -path (resp. strict F -path) from x to y we shall mean a continuous
function γ : I → X such that γ(0) = x, γ(1) = y, and such that the restriction of
γ−1F to (0, 1] (resp. and such that γ−1(F )) is locally constant. Then the above
construction defines a canonical cospecialization map (resp. isomorphism)

γ∗x,y : Fx → Fy.

If γ is an F -path from x to y and γ′ is a strict F -path from y to z, then the
concatenation γγ′ is an F -path from x to z, and γ∗x,z = γ′

∗
y,z ◦ γ∗x,y. If X is a

log scheme and x and y are points of X or Xlog, we shall simply say log path
instead of MX -path.
We shall need a toric version of this cospecialization construction. Let K be
a proper ideal in a toric monoid P , let X := AP,K, and let ζ : X̃ log → Xlog be
the universal cover constructed in Proposition (3.1.1). For each face F of P
not meeting K, let X∗

F denote the corresponding (locally closed) log stratum
of X, and let jF : X∗

F → X denote the inclusion. Thus jF factors through the
closure XF of X∗

F in X. We denote by X̃∗
F the inverse image of X∗

F in X̃ log,
with similar notation for X log

F and j̃F . We say that a sheaf W on Xlog or X̃ log

is log constructible if its restriction to each log stratum is locally constant.
Let W be a log constructible sheaf on X̃ log. Since the log strata are simply
connected, the restriction of W to each log stratum X̃∗

F is constant, and we
let WF := W (X̃∗

F ). Lemma (3.1.3) implies that each point of X̃F admits a
neighborhood basis of open sets whose intersection with X̃∗

F is connected (even
contractible). It follows that j̃F∗j̃∗FW is canonically isomorphic to the constant
sheaf WF on X̃ log

F . If G is a face of F , the canonical map j̃∗GW → j̃∗Gj̃F∗j̃
∗
FW

induces a map
cospG,F : WG →WF .

Furthermore, there is a commutative diagram

W - j̃F∗j̃
∗
FW

j̃G∗j̃
∗
GW

?
- j̃G∗j̃

∗
Gj̃F∗j̃

∗
FW.

?



On the logarithmic Riemann-Hilbert correspondence 51

Since j̃F∗j̃
∗
FW is the constant sheaf with value WF , the same argument as

before shows that the vertical arrow on the right is an isomorphism. If H is
a face of G, we can pull back this diagram to X̃∗

H and take global sections to
obtain a commutative diagram

WH

@
@

@
@

@

cospH,F

R

WG

cospH,G

? cospG,F- WF .

It is well-known and easy to check that W is determined completely by the
family of sets WF and cospecialization maps. Indeed, the functor which takes
a log constructible sheaf on X̃ to the corresponding family of sets and maps
is easily seen to be an equivalence. We should perhaps remark that it is not
difficult to show that if X := AP,K and W is a log constructible sheaf on X̃, then
the natural map from W (X̃) to the stalk of W at the vertex is an isomorphism.
This fact can be used to give another interpretation of the cospecialization
maps.
Let V be a log constructible sheaf on Xlog and let Ṽ be its pullback to X̃ log.
Then each ṼF is equipped with a natural action of π1(P ), and the cospecial-
ization maps are compatible with this action. In this way one obtains an
equivalence between the category of log constructible sheaves on Xlog and the
category of families of π1(P )-sets and compatible cospecialization maps. Let x
and y be points of Xlog and choose points x̃ and ỹ of X̃ lying over them. Let
F (x) (resp. F (y)) be the face of P corresponding to the log stratum containing
x (resp. y). Then if F (x) ⊆ F (y),

cospx̃,ỹ : Vx - Vy

is by definition the map such that the diagram

ṼF (x)

cospF (x),F (y)- ṼF (y)

Vx
? cospx̃,ỹ - Vy

?

commutes. Here the left vertical arrow is the composite ṼF (x)
∼= Ṽ (X̃∗

F ) ∼=
Ṽx̃ ∼= Vx, and the right one is defined similarly. Note that the map cospx̃,ỹ
depends on the choices of x̃ and ỹ lying over x and y, and that cospx̃,ỹ is an
isomorphism if x and y lie in the same log stratum. Note also that if z̃ is a
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point of X̃ such that F (y) ⊆ F (z), then there is a commutative diagram

Vx

@
@

@
@

@

cospx̃,z̃

R
Vy

cospx̃,ỹ

? cospỹ,z̃- Vz

Remark 3.2.1 Let V be a log constructible sheaf on Xlog := AlogP,K and let γ
be a continuous map from the unit interval I to Xlog such that the image of
(0, 1] is contained in a single log stratum. Choose a point x̃ of X̃ lying over
x := γ(0), let γ̃ : I → X̃ be the lift of γ such that γ̃(0) = x̃, and let ỹ := γ̃(1).
Then the following diagram commutes:

γ−1V0

cosp0,1- γ−1V1

Vx̃
? cospx̃,ỹ- Vỹ

?

The notions of log stratification and log constructibility make sense more gen-
erally, at least locally. Let X be an ideally smooth fs log scheme over C, let
x be a C-valued point of X, and consider the map αX,x : MX,x → OX,x. (We
are temporarily writing x to remind ourselves that we are taking the stalks in
the étale topology.) A point of the spectrum OX,x is said to be a log branch at
x if it is the inverse image of a prime ideal in the monoid MX,x. Since X is,
locally in some étale neighborhood of x, isomorphic to AP,K for some fs monoid
P and some ideal K in P , there is a bijection between the set of log branches
at x and the set of prime ideals of MX,x containing KX,x. Each log branch
at x defines an irreducible and unibranch closed subscheme Z in some étale
neighborhood of x, and the restriction of MX and KX to a dense open subset
Zo of Z is constant. We shall call a maximal such Zo a log stratum at x. We
use the same terminology for the inverse images of these sets in Xlog.

Corollary 3.2.2 Let X be an ideally smooth fs log scheme and let x be a
point of Xlog. Then x has an étale neighborhood U such that for every point y
of U , there exists a log path from x to y.

Proof: Without loss of generality we may assume that X = AP,K, where P
is a fine monoid and K is an ideal of P , and that x is the vertex of Xlog. We
may work in X̃log instead of Xlog. Then the result follows from (3.1.1) and the
discussion which follows it.
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Definition 3.2.3 Let X be an idealized log scheme and let V be a sheaf on
Xlog. Then V is said to be log constructible if for each x ∈ Xlog, V is locally
constant on the log strata at x.

Observe that this condition is local in the analytic topology ofX. That is, if V is
a sheaf on Xlog and Xan admits a cover by open sets U such that the restriction
of V to each τ−1(U) is log constructible, then V is log constructible. The
sheaves MX and KX are always log constructible. Let V be a log constructible
sheaf on Xlog, let x and y be points of Xlog, and let γ be a log path from x
to y. Then X admits an étale open cover {Uλ} which admits charts as above,
and the restriction of γ to each γ−1(Uλ)∩ (0, 1] factors through a log stratum.
It follows that the restriction of γ−1V to (0, 1] is locally constant, so γ defines
a cospecialization map

γ∗x,y : Vx → Vy.

In particular, V is locally constant on the fiber τ−1(x) of each point x of X,
and hence if z ∈ τ−1(x), Vz has a natural action ρ of the fundamental group
Ix of τ−1(x).
By a sheaf of exponential data for X we mean a log constructible sheaf of
subgroups Λ ⊆ C ⊗Mgp

X containing M
gp

X . In practice, it will suffice to take
Λ := C⊗Mgp

X , but for some purposes it might be preferable to use Q⊗Mgp

X or
M

gp

X . We also write Λ for τ−1Λ to simplify the notation. Let Clog
X denote the

pullback to Xlog of the quotient of the sheaf of monoid algebras C[−MX ] by
the ideal generated by −KX . This sheaf is also log constructible. The inclusion
−MX → Λ defines an action of −MX on Λ, so that one has a notion of a sheaf
of Λ-graded Clog

X -modules.

Definition 3.2.4 Let LΛ
coh(C

log
X ) denote the category of Λ-graded sheaves V

of Clog
X -modules on Xlog satisfying the following conditions:

1. V is log constructible.

2. For each z ∈ Xlog, the stalk Vz of V at z is finitely generated over Clog
X,z.

3. If x and y are points of Xlog and γ is any log path from x to y, then the
cospecialization map

γ∗x,y : Vx ⊗Clog
X,x

Clog
X,y → Vy

is an isomorphism.

4. If z ∈ Xlog, γ ∈ Iτ(z), and λ ∈ Λz, then exp〈γ, λ〉 is the only eigenvalue
of the action of ργ on Vλ,z, i.e., ργ − exp〈γ, λ〉 : Vz,λ → Vz,λ is nilpotent.

We shall say that a sheaf of Λ-graded Clog
X -modules is coherent if it satisfies

the above conditions. These perhaps need some explanation. Let x = τ(z),
and note that in (4) of the above definition, γ ∈ Ix = Hom(M

gp

X,x,Z(1)) and
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λ ∈ C ⊗Mgp

X,x, so that 〈γ, λ〉 ∈ C makes sense. Moreover, if m ∈ −MX,x,
exp〈γ,m〉 = 1, so (4) is compatible with multiplication by elements of Clog

X .
Note also that (4) implies that the action of Ix on Vz,λ is unipotent if λ ∈Mgp

X,x,
and that (2) implies that each graded piece Vz,λ is a finite dimensional C-
vector space. Using the compatibility of cospecialization with concatenation of
log paths, one can easily check that condition (3), like the others, is local on
Xan. Thus the category LΛ

coh(C
log
X ) is of local nature on Xan. Suppose V is

log constructible, that X admits a toric chart above, and that γ is a log path
from x to y for which (3) holds. Then it follows from the toric interpretation
of the cospecialization map that if γ′ is a log path from x to any point y′ in
the log stratum of y, γ′∗x,y′ is also an isomorphism. Furthermore if a morphism
V → V ′ in LΛ

coh(C
log
X ) induces an isomorphism on the stalks at some point

z of Xlog, then one sees easily from (3) and Corollary (3.2.2) that it induces
an isomorphism in some neighborhood of z. Thus objects in LΛ

coh(C
log
X ) can

be thought of as analogs of locally constant sheaves—of course, when the log
structure is trivial, they are indeed locally constant.
Let us describe the category LΛ

coh(C
log
X ) explicitly when X = AP for a toric

monoid P endowed with a rigid set of exponential data Λ ⊆ C ⊗ P gp. For
each face F of P , the image ΛF of Λ in (C⊗ P gp)/(C⊗ F gp) defines a set of
exponential data for P/F , and an inclusion F ⊆ G induces a cospecialization
map ΛF → ΛG. We thus obtain a sheaf of exponential data on AP, also
denoted by Λ. Let M be a Λ-graded C[P ]-module endowed with an action
of π1(P ) which satisfies the coherence conditions of (1.4.1), i.e., an object of
L

Λ

coh(P ) (see (1.4.2)). For each face F of P , let MF := C[P/F ] ⊗C[P ] M ,
with its natural structure of a ΛF -grading and action of π1(P ), and recall from
(1.4.2) that M 7→MF is an equivalence when F = P ∗. Since this construction
is compatible with further dividing by faces, the family {MF : F} defines an
object of LΛ

coh(C
log
X ). Conversely, if V is an object of LΛ

coh(C
log
X ), the restriction

of V to X log
P∗ is locally constant, and the evident maps

Γ(X̃ log
P∗ , Ṽ ) - Ṽṽ � Vv

are isomorphisms, where v ∈ Xlog and ṽ ∈ X̃ log are the vertices. The auto-
morphism group of the covering X̃ log

P∗ → X log
P∗ is π1(P ), and it acts naturally

on Γ(X̃ log
P∗ , Ṽ ) ∼= Vv. Thus Γ(X̃ log

P∗ , Ṽ ) is an object of L
Λ

coh(P ). This establishes
the following equivalence, and the compatibilities which go along with it should
be clear.

Proposition 3.2.5 Let X := AP, where P is a toric monoid with rigid expo-
nential data Λ ⊆ C⊗ P gp.

1. The functor
V 7→ Γ(X̃ log

P∗ , Ṽ ) ∼= Ṽṽ
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is an equivalence from the category LΛ
coh(C

log
X ) to the category L

Λ

coh(P ).
A quasi-inverse is the functor taking an object M of L

Λ

coh(P ) to the family
{MF := C[P/F ]⊗M} described above.

2. If (φ, ψ) : (P,ΛP ) → (Q,ΛQ) is a homomorphism of toric monoids and
exponential data and Y := AQ, the diagram of functors

L
Λ

coh(P )
φ∗ψ- L

Λ

coh(Q)

LΛ
coh(C

log
X )

? f∗log- LΛ
coh(C

log
Y )

?

is 2-commutative.

3. If V is an object of LΛ
coh(C

log
X ) and F is a face of P , then the cospecial-

ization map cospP∗,F : ṼP∗ → ṼF identifies ṼF with the tensor product
ṼP ⊗C[P ] C[P/F ].

3.3 The ring ÕlogX
To globalize the constructions of (1.4.8) and (2.1.2), we shall construct a sheaf
of rings ÕlogX on Xlog, combining the constructions in [7] and [8]. Let us begin
by reviewing the first of these.
If Y and X are topological spaces, let YX denote the sheaf which to every open
set U of X assigns the set of continuous functions U → Y . Recall from [7] that
there is a commutative diagram with exact rows, in which the squares on the
right are Cartesian:

0 - Z(1) - τ−1(OX)
exp- τ−1O∗X - 0

0 - Z(1)

id

?
- L

ε

? π- τ−1Mgp
X

λ

?
- 0

0 - Z(1)

id

?
- R(1)Xlog

h̃

? exp- S1
Xlog

h

?
- 0

(3.3.1)

To understand this diagram, recall that a point of Xlog lying over a point x of
X is a homomorphism of monoids σ : MX,x → S1 such that

σ(m)|αX(m)(x)| = αX(m)(x)
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for every m ∈MX,x. If m is a local section of MX , then the map sending such a
σ to σ(mx) is a continuous function of σ, and so defines a section h(m) of S1

Xlog
.

This defines the homomorphism h in the diagram, and by definition, L is the
fiber product of τ−1Mgp

X and R(1)Xlog
over S1

Xlog
. This defines the bottom two

rows of the diagram, and the top row is just the pullback of the exponential ex-
act sequence on Xan. The map h◦λ is DeRhamcohomology, Logscheme, (i.e.,
the map u 7→ |u|−1u). Let Im : τ−1OX → R(1)X be the map taking a function
to its imaginary part. Then exp ◦Im = DeRhamcohomology, Logscheme◦exp,
and so there is a unique map ε with h̃ε = Im making the diagram commute.
Since the big right rectangle is Cartesian, so is the upper square. Chasing the
diagram shows that there in an exact sequence

0→ τ−1OX
ε- L → τ−1M

gp

X
- 0. (3.3.2)

By definition, OlogX is the universal τ−1OX -algebra equipped with a map L →
OlogX such that the diagram

τ−1OX
ε - L

@
@

@
@

@R
OlogX

?

commutes.
The ring OlogX is adequate to deal with connections whose exponents vanish.
In order to deal with the general case we adopt a construction of Lorenzon [8].
Recall that the exact sequence

0→ O∗X →Mgp
X →M

gp

X → 0

defines a family of O∗X -torsors, hence invertible sheaves, indexed by M
gp

X . If a
and b are local sections of M

gp

X , there is a map of the corresponding invertible
sheaves La⊗Lb → La+b, and one obtains using these maps an M

gp

X -indexed or
graded OX -algebra AgpX := ⊕La. The ring OlogX ⊗ AgpX is sufficient to classify
objects of MICΛ

coh(X/C) when Λ = M
gp

X , and the corresponding local sys-
tems have unipotent logarithmic monodromy. For the general case, we need to
enlarge AgpX even more.
Consider the following diagram:

0 - C⊗ τ−1OX - C⊗ L - C⊗ τ−1M
gp

X
- 0

0 - O∗X

µ

?
- M̃X

µ̃

?
π̃- C⊗ τ−1M

gp

X

id

?
- 0.

(3.3.3)
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Here the top row is obtained by tensoring the sequence (3.3.2) with C, and the
bottom row is just the pushout by the map µ sending a⊗f to exp(af). Finally
let

0 - O∗X - MΛ
X

- Λ - 0 (3.3.4)

be the pullback of the bottom row of the above diagram by the map Λ ⊆
C⊗ τ−1Mgp

X . If it seems to be unnecessary to specify the exponential data we
write M log

X instead of MΛ
X . It follows from the exactness of the middle row of

diagram (3.3.1) that there is an injection τ−1Mgp
X →MΛ

X which agrees with µ̃
when composed with π.
Let AΛ

X (or AlogX ) denote the Λ-graded OX -algebra corresponding to the exact
sequence (3.3.4).

Proposition 3.3.1 Let dL : L → τ−1Ω1
X/C denote the composition of the map

π : L → τ−1Mgp
X with dlog : τ−1Mgp

X → τ−1Ω1
X/C.

1. If f is a section of τ−1(OX), then dLε(f) = df in τ−1(Ω1
X/C).

2. There is a unique homomorphism M̃X
dlog- τ−1Ω1

X/C such that

dlogµ̃(a⊗ `) = adL(`)

for every section ` of L and every a ∈ C.

3. There is a unique additive and homogeneous homomorphism

∇ : AlogX → AlogX ⊗ τ
−1Ω1

X/C,

satisfying the Leibnitz rule with respect to τ−1OX and such that if xm is
the section of AlogX corresponding to a section m of M log

X ,

∇xm = xm ⊗ dlog(m).

4. There is a natural map of Λ-graded rings ι : Clog
X → AlogX , whose image

is annihilated by d.

Proof: By definition, dLε(f) = dlogπε(f) = dlogλexp(f) = df , as asserted
in (1). Let η : C ⊗ τ−1Ω1

X/C → τ−1Ω1
X/C be multiplication. If ai ∈ C and

fi ∈ τ−1(OX) for i = 1 . . . n, it follows that

η ◦ (id⊗ dL) ◦ (id⊗ ε)(
∑

ai ⊗ fi) =
∑

aidfi = d
∑

aifi.

In particular, this is zero if
∑
aifi is locally constant. The kernel of the map

µ : C⊗OX → O∗X is generated by the set of sums
∑
ai⊗fi such that

∑
aifi ∈

Z(1), and in particular any such sum is killed by η ◦ (id⊗ dL) ◦ (id⊗ ε). Since
M̃X is the quotient of C⊗L by the image of this kernel, there exists a unique
dlog as in (2).
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To verify the existence of ∇, suppose that λ ∈ Λ, and let AlogX,λ be the degree
λ part of AlogX . This is an invertible τ−1OX -module, and if m ∈M log

X maps to
λ, there is a corresponding basis xm of AlogX,λ. Then there is a unique

∇ : AlogX,λ → A
log
X,λ ⊗ τ

−1Ω1
X/C

satisfying the Leibnitz rule such that ∇xm = xm ⊗ dlog(m). We must verify
that ∇ is independent of the choice of m. If m′ is another section of M log

X

mapping to λ, then m = um′ for some u ∈ O∗X . Let ∇′ be defined using m′ in
place of m. Then xm = uxm′ and dlog(m) = dlogu+ dlogm′. Hence

∇′xm = ∇′(uxm′)
= du⊗ xm′ + u∇′xm′

= u−1du⊗ xm + udlog(m′)⊗ xm′

= dlogu⊗ xm + dlog(m′)⊗ xm
= dlogm⊗ xm
= ∇(xm),

as required.
Let us continue to write the monoid law of MX multiplicatively and that of
MX additively. A section m of M−1

X defines an element m−1 of MX ; let
ι(m) := α(m−1)xm ∈ AlogX . If u ∈ O∗X and m′ = um, then

α(m′−1)xm′ = u−1α(m−1)uxm = ι(m).

Thus ι(m) depends only on the imagem ofm inM
−1

X , and we write ι(m) instead
of ι(m). Then ι defines a homomorphism of graded rings C[−MX ] → AlogX
sending em to ι(m). Since α(m−1) vanishes if and only if m ∈ KX , ι factors
through an injective homomorphism Clog

X := C[−MX ]/C[−KX ], which we also
denote by ι. Furthermore,

dι(m) = ∇(α(m−1)xm)
= dα(m−1)xm + α(m−1)∇xm
= α(m−1)dlog(m−1)xm + α(m−1)dlog(m)xm
= −α(m−1dlog(m)xm + α(m−1)dlog(m)xm
= 0

Definition 3.3.2 Let X/C be a fine saturated idealized log scheme with a sheaf
of exponential data Λ ⊆ C ⊗Mgp

X . Then ÕlogX is the Λ-graded τ−1OX-algebra
AlogX ⊗τ−1OX

OlogX , and

d : ÕlogX → Ω̃1,log
X/C := ÕlogX ⊗τ−1OX

τ−1Ω1
X/C
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is the map defined by the usual rule for the tensor product connection, using
the connections defined above on AlogX and OlogX .

Remark 3.3.3 Let f : X → Y be a morphism of fs idealized log schemes which
is compatible, in the obvious sense, with sheaves of exponential data ΛX and
ΛY . Then there is a commutative diagram of ringed spaces

Xlog

flog- Ylog

X

τ

? f - Y

τ

?

which is Cartesian if f is strict [7]. It is straightforward to verify that f induces
a map

τ−1OX ⊗(fτ)−1OY
f−1
logA→ AX ,

where A is Olog, Alog, or Õlog, compatible with the connections. If f is strict
and the map f−1ΛY → ΛX is an isomorphism, then the above map is also an
isomorphism.

We shall need an explicit description of the ring ÕlogX when X is the log scheme
associated to a toric monoid P . Let

ζ : X̃ log := C(P )× Y (P )→ Xlog

be the universal covering constructed in (3.1.1). If p ∈ P and x̃ = (ρ, y) ∈ X̃ log,
let p̂(x̃) := y(p) ∈ R(1). Then p̂ is a continuous function from X̃ log to R(1),
i.e., a global section of R(1)X̃log . The element p also defines a global section
β(p) of MX , and in the diagram (3.3.1) pulled back to X̃ log, hβ(p) = exp p̂.
Thus β̃(p) := (p̂, β(p)) is a global section of ζ−1L, and β̃ is a map P → ζ−1L.
We shall abuse notation and write OX̃ for the sheaf ζ−1τ−1OXan

.

Lemma 3.3.4 Let X := AP and let ζ : X̃ log → Xlog be the universal covering.

1. The map β̃ described above fits into a cocartesian diagram:

β−1(O∗X)
λ̃ - OX̃

P gp
? β̃- ζ−1L.

ε

?
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2. Let ρ be the action of π1(P ) = Aut(X̃ log/Xlog) on OX̃ and ζ−1L by
transport of structure. Then for each p ∈ P gp, ργ(β̃(p)) = β̃(p) + 〈γ, p〉.
In particular, if z is a point in Xlog then the action of Iτ(x) on Lz is
given by

ργ(`) = `+ 〈γ, π`〉
for any ` ∈ Lz and γ ∈ Iτ(x).

3. Let Ĩ be the sheaf of ideals in the algebra OX̃ ⊗ S·(P gp) generated by all
elements of the form λ̃(p) ⊗ 1 − 1 ⊗ p for p a local section of β−1O∗X .
Then the map β̃ induces an isomorphism of OX̃ -algebras

(OX̃ ⊗ S
·(P gp))/Ĩ → ζ−1OlogX .

Proof: In the diagram, β−1(O∗X) means the subsheaf of the constant sheaf
P consisting of those elements of P which become units in MX , open set
by open set. Let p be a section of this sheaf on some open set U ⊆ Xan

and let m := β(p) ∈ M∗
X(U) and u := αX(m) ∈ O∗X(U). Then log |u| ∈

RX(U), p̂ ∈ R(1)(τζ)−1(U), and λ̃(p) := (log |u|, p̂) is a section of ζ−1(OX)
such that exp λ̃(p) = u. Then the diagram in (1) commutes. The fact that it
is cocartesian follows from the exact sequence (3.3.2).
Recall that the action of π1(P ) on X̃ log is the action induced by translation
and its inclusion as a subgroup. Thus if f is a function on X̃ log, ργ(fx̃) =
f(x̃) + f(γ) for each x̃ ∈ X̃ log. Hence γ∗(p̂) = p̂ + 〈γ, p〉 and γ∗(β̃(p)) =
β̃(p) + 〈γ, p〉, and if q ∈ β−1(O∗X), ργ(λ̃(q)) = λ̃(q) + 〈γ, q〉. This proves the
formula for the action of ρ on ζ−1L. Note that if γ ∈ Ix, then γ∗(β̃(p))− β̃(p)
depends only on the image β(p) of p in MX . Let ` := β̃(p), and note that
β(p) = π(`). This proves the formula for the action of Ix on Lz, since the map
P →M

gp

X
∼= Lz/OX,x is surjective.

The map β̃ followed by the inclusion is a homomorphism P gp → ζ−1OlogX , and
by the universal property of the symmetric algebra, this map extends uniquely
to a homomorphism of algebras OX̃ ⊗ S·(P gp) → ζ−1OlogX . For any local
section q of β−1O∗X , the commutativity of the square in (1) and the triangle
(3.3) imply that 1 ⊗ p and λ̃(p) ⊗ 1 have the same image in ζ−1OlogX , so that
this homomorphism annihilates Ĩ. On the other hand, the map

OX̃ ⊕ P
gp → (OX̃ ⊗ S

·(P gp))/Ĩ

sending (f, p) to f ⊗ 1 + 1 ⊗ p factors through ζ−1L, since the square in (1)
is cocartesian and since for any q ∈ β−1O∗X the elements 1 ⊗ [q] and λ̃(q) ⊗ 1
have the same image in (OX̃ ⊗ S·(P gp))/Ĩ. By the universal property of OlogX ,
these maps extend uniquely to a map ζ−1OlogX → (OX̃ ⊗ S·(P gp))/Ĩ, which is
the inverse to the map in (3).

Proposition 3.3.5 Let P be a toric monoid with exponential data Λ ⊆
C⊗ P gp and a proper ideal K ⊆ P , and let X := AP,K.
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1. Then there are natural maps, compatible with the connections and grad-
ings, and actions of π1(P ):

Γ(X̃ log,OX̃)⊕ P gp → Γ(X̃ log, ζ−1L)

Γ(X̃ log,O∗
X̃

)⊕ Λ → Γ(X̃ log, ζ−1M̃Λ
X)

Γ(X̃ log,OX̃)⊗ Z[Λ] → Γ(X̃ log, ζ−1AlogX )

Γ(X̃ log,OX̃)⊗ Γ·[P gp] → Γ(X̃ log, ζ−1OlogX )

Γ(X̃ log,OX̃)⊗C[P ] J(P,Λ) → Γ(X̃ log, ζ−1ÕlogX ).

2. Suppose that P is sharp and let z (resp. v) be the vertex of Xlog (resp.
X). Then these maps induce isomorphisms on stalks:

OX,v ⊕ P gp → Lz
O∗X,v ⊕ Λ → M̃Λ

X,z

OX,v ⊗ Z[Λ] → AlogX,z
OX,v ⊗ Γ·[P gp] → OlogX,z

OX,v ⊗C[P ] J(P,Λ) → ÕlogX,z

These isomorphisms are compatible with the connections, gradings, and
actions of Iv = π1(P ).

Proof: We have already constructed the first of the maps in statement (1),
and the construction of the remaining maps is then straightforward. Let γ be
an element of Ix, let p be an element of P gp and let a be an element of C.
Then µ̃(a⊗ β̃(p)) is a global section of ζ−1M̃X , and

ργ µ̃(a⊗ β̃(p)) = µ̃(a⊗ ργ β̃(p))

= µ̃(a⊗ β̃(p) + a⊗ 〈γ, p〉)
= µ̃(a⊗ β̃(p))µ(a⊗ 〈γ, p〉)
= µ̃(a⊗ β̃(p)) exp(a〈γ, p〉)
= µ̃(a⊗ β̃(p)) exp〈γ, a⊗ p〉

It follows that if λ is any element of Λ and m̃ is its image in Γ(X̃ log, ζ−1M̃X),
then

ργ(m̃) = m̃ exp〈γ, λ〉

This shows that the second arrow is compatible with the actions of π1(P ). Let
xm̃ be the basis element of AX,λ corresponding to m̃ and let u := exp 〈γ, λ〉.
Then

ργ(xm̃) = xργ(m̃) = xum̃ = uxm̃.
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This shows that the third arrow is compatible with the actions of π1(P ). Fur-
thermore, from the definition in (3.3.2), ∇xm̃ = xm̃⊗ dlogm̃, so it is also com-
patible with the connections. The sheaf OlogX is generated over OX by L, on
which we have already calculated the action of Ix, and it follows that its action
on all of OlogX is as described. The same argument works with the connections.
The statement for ÕlogX follows, as does part (2) of the proposition.

3.4 Logarithmic Riemann-Hilbert

We can at last give the precise statement of the logarithmic Riemann-Hilbert
correspondence.

Definition 3.4.1 Let X/C be an fs smooth idealized log scheme and let Λ ⊆
C ⊗ M

gp

X be a set of exponential data for X. Let MICΛ
coh(Xan/C) be the

category of coherent sheaves of OX-modules on Xan equipped with an integrable
logarithmic connection all of whose exponents lie in Λ.

1. If (E,∇) is an object of MICΛ
coh(Xan), let

Ẽ := ÕlogX ⊗τ−1OX
τ−1E,

with the induced connection ∇̃ : Ẽ → Ẽ ⊗ Ω̃1,log
X/C, and let V(E,∇) be the

sheaf of Λ-graded Clog
X -modules Ẽ∇̃.

2. If V is an object of LΛ
coh(C

log
X ), let Ṽ := ÕlogX ⊗Clog

X
V , endowed with

the connection ∇̃ := d ⊗ id and the tensor product Λ-grading, and let
(E(V ),∇) := τΛ

∗ (Ṽ ,∇), where the superscript Λ means the degree zero
part with respect to the Λ-grading.

Since the connection on Ẽ is Clog
X -linear and homogeneous, V(E,∇) is a sheaf

of Λ-graded Clog
X -modules. Thus the definition (1) above makes sense.

Theorem 3.4.2 Let the notation be as in (3.4.1).

1. The functor V above is an equivalence of tensor categories

MICΛ
coh(Xan)→ LΛ

coh(C
log
X ),

with quasi-inverse E.

2. If f : X → Y is a morphism of smooth idealized fs log schemes and
(E,∇) is an object of MICΛ

coh(Y ), then there is a natural isomorphism
in LΛ

coh(C
log
X ):

f∗logV(E,∇) ∼= V(f∗E,∇).

3. Let (E,∇) be an object of MICΛ
coh(Xan) and let V := V(E,∇).
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(a) The natural map

ÕlogX ⊗Clog
X
V → Ẽ := ÕlogX ⊗τ−1OX

τ−1E

is an isomorphism, compatible with the Λ-gradings and connections.

(b) The natural map

V(E,∇)→ Ẽ ⊗Õlog
X

Ω̃·,logX/C

of complexes of abelian sheaves on Xlog is a quasi-isomorphism.

(c) The natural map

E ⊗ Ω·X/C → RτΛ
∗ (Ẽ ⊗ Ω̃·,logX/C)

is a quasi-isomorphism, where the superscript Λ means the degree
zero part.

Proof: We will reduce the proof of the above global theorem to the local
versions proved in the previous sections. Suppose that K is a proper ideal in
a toric monoid P and let X := AP,K. Let E be an object of MICΛ

coh(P,K/C),
and let Ean be the corresponding object of MIC(Xan/C). Then V(Ean) is
a sheaf of graded Clog

X -modules on Xlog. Its stalk at the vertex z is a Λ-
graded C[−P ]-module. Since all the sheaves involved in the construction of
V(Ean) are locally constant on the fibers of τ , it also is locally constant on
the fibers. On the other hand, the equivariant Riemann-Hilbert transform
V of E is an object of LΛ(−P/C). Thus it is a Λ-graded C[−P ]-module,
endowed with an action of π1(P ). Recall that in (3.3.5) we constructed a
map J(P,Λ) → Γ(X̃ log, ζ−1ÕlogX ). Tensoring with E, and observing that the
resulting map is compatible with connections, we find a commutative diagram

V - Γ(X̃ log, ζ−1V(Ean))

E ⊗ J(P,Λ)
?

- Γ(X̃ log, ζ−1(Ean ⊗ ÕlogX )).
?

Lemma 3.4.3 Let X := AP,K, let E be an object of MICΛ
coh(P,K) and let

V ∈ LΛ(−P,−K) be its equivariant Riemann-Hilbert transform (1.4.8). Let z
be the vertex of Xlog.

1. The map V → Γ(X̃ log, ζ−1V(Ean)) constructed above induces an isomor-
phism

V := V ⊗C[−P ] C[−P ] ∼= V(Ean,∇)z

in the category of Λ-graded C[−P ]-modules, compatible with the actions
of Iv ⊆ π1(P ).
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2. The natural map V(Ean,∇)z ⊗Clog
X
ÕlogX,z → Ẽan,z is an isomorphism.

3. The natural map V(Ean,∇)z → Ẽan,z ⊗ Ω̃·X/C is a quasi-isomorphism.

Proof: LetX := AP,K and let (E,∇) be the image of (E,∇) inMICΛ
coh(P/C).

Because the functor Ban of (2.1.2) is fully faithful, the map E∇
an,v → E

∇
an,v is

an isomorphism. Now Ẽz := E ⊗ ÕlogX,z is a direct limit of finitely generated
modules with integrable connection. Applying the same remark to each of these
and passing to the limit, we see that the map V(Ean,∇)z → V(Ean,∇)z is also
an isomorphism. This reduces the proof of the first and third statements to the
case in which P is sharp. The second statement will also follow from the sharp
case. Indeed, a section of P → P induces a strict morphism f : X → X, so
f∗Õlog

X
∼= ÕlogX . Thus for the remainder of the proof we may and shall assume

that P is sharp.
Because the functor A of (2.1.2) is an equivalence, the map

E∇ ∼= E∇
an,v (3.4.1)

is an isomorphism. Now J(P,Λ) is a direct limit of objects Ja of MICΛ
coh(P ).

For each a, E ⊗ Ja is an object of MICΛ
coh(P ), and so applying (3.4.1) to each

of these produces an isomorphism

(E ⊗ Ja)∇ ∼= (Ean,v ⊗ Ja)∇ ∼= (E ⊗OXan,v
⊗ Ja)∇.

Passing to the limit, we see by the last statement of (3.3.5) that the map(
E ⊗C[P ] J(P,Λ)

)∇ → (
E ⊗C[P ] OXan,v

⊗ J(P,Λ)
)∇ → (E ⊗C[P ] ÕXlog,v)

∇

is an isomorphism. By (1.4.8), the left hand side of this equation is the equiv-
ariant Riemann-Hilbert transform of E, which is in fact V , and the right side
is by definition the stalk of V(E) at z. This proves (1). Recall from (1.4.8.2)
that the natural map V ⊗C[−P ] J(P,Λ)→ E ⊗C[P ] J(P,Λ) is an isomorphism.
Statement (2) follows from this, after tensoring with OXan

. To prove (3), it
will now suffice to show that Hi(Ẽ ⊗ Ω̃·X) = 0 if i > 0. The same direct limit
argument and Theorem (2.1.2) reduce this to the analogous computation in
the category MICΛ

coh(P/C), where it is a consequence of (1.4.8.2).

We can now prove (2) of the theorem. Let (E,∇) be an object of MICΛ
coh(Yan),

and let τ∗Y E := τ−1E⊗ÕlogY , with a similar notation for X. As we have seen in
(3.3.5), there is a natural map f−1

log Õ
log
Y → ÕlogX , compatible with the exterior

derivative and hence a natural and horizontal isomorphism

f∗logτ
∗
Y E := f−1

log τ
∗
Y E ⊗ Õ

log
X
∼= τ∗Xf

∗E (3.4.2)

Thus there is a natural map

V(E) := (τ∗Y E)∇ → flog∗(τ∗Xf
∗E)∇ = flog∗V(f∗E).
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By adjunction, we get a map

f∗logV(E) := f−1
logV(E)⊗f−1Clog

Y
Clog
X → V(f∗E),

which we are claiming is an isomorphism of Clog
X -modules. It is clear from the

local description (3.3.5) of ÕlogX that it is faithfully flat over Clog
X , so it suffices

to prove that the map is an isomorphism after tensoring with ÕlogX . There is a
commutative diagram

f∗logV(E)⊗Clog
X
ÕlogX - V(f∗E)⊗Clog

X
ÕlogX

f∗logτ
∗
Y E
?

- τ∗Xf
∗E
?

The lower horizontal map is the isomorphism (3.4.2) we started with, and we
have already seen in (3.4.3) that the vertical arrows are isomorphisms. This
implies that the arrow in (2) of the theorem is an isomorphism.

Lemma 3.4.4 For any X as in the theorem and any E ∈ MICΛ
coh(Xan/C),

V(E) is log constructible (3.2.3).

Proof: This can be verified locally in an analytic neighborhood of an arbitrary
point x of X. Since X/C is fs and ideally log smooth, there exist a toric monoid
P , an ideal K of P , and a strict étale map X → AP,K sending x to the vertex.
In the analytic topology, this map is locally an isomorphism, so we may and
shall assume that X = AP,K. By (2.1.2), there is a neighborhood of the vertex
on which (E,∇) is isomorphic to the analytification of an object (M,∇) of
MICΛ

coh(P,K), so we may as well assume that (E,∇) is this analytification.
We may also assume that Λ = C⊗ P gp. A splitting of P → P induces a map
X → X, and as we observed in (2.2.2), (E,∇) is isomorphic to the pullback of
some (E,∇) on X, in some neighborhood U of v. By part (2) of the theorem,
formation of V is compatible with pullback, and it follows that V(E,∇) is also
pulled back from X. Hence it is constant on U∩AP∗ . But AP∗ is the log stratum
containing v. Since the same argument works in a neighborhood of every point,
V(E,∇) is locally constant on the canonical stratification of Xlog.

Lemma 3.4.5 The functor V of Theorem (3.4.2) maps MICΛ
coh(Xan) into

LΛ
coh(C

log
X ). In fact, suppose X = AP,K, with P sharp, E is an object of

MICΛ(P,K) and V is its equivariant Riemann-Hilbert transform (1.4.8).
Then the sheaf V(Ean) is isomorphic to the object of LΛ(Clog

X ) corresponding
to V via the equivalence in (3.2.5).

Proof: Let be E an object of MICΛ
coh(P,K). We have seen in (3.4.4) that

V(Ean) is log constructible. To prove that it lies in L(Clog
X ) is a local question
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on Xan, so we may assume that X = AP,K and work in a neighborhood of the
vertex. By (2.1.2), we may also assume that P is sharp. We claim that if x̃ is
the vertex of X̃ log and ỹ is any point of X̃ log, then

cosp∗x̃,ỹ : Clog
X,y ⊗ V(Ean)x → V(Ean)y

is an isomorphism. As we observed above, if this is true for ỹ, it is also true for
every other ỹ′ in the same log stratum. Thus we may assume that ỹ is the vertex
of Ỹ log, where Y := AP/F,K/F for some face F of P . The map P → P/F induces
a map i : Y → X; note that i does not map y to x. The equivariant Riemann-
Hilbert transform W of E⊗C[P/F ] can be identified with V ⊗C[−P/F ], and
i∗Ean is the analytic sheaf with connection corresponding to E⊗C[P/F ]. Thus
it follows from (2) of theorem (3.4.2) and the functoriality of the constructions
of (3.3.5) that there is a commutative diagram

V - Γ(X̃ log, ζ−1V(Ean)) - Vx

W
?

- Γ(Ỹ log, ζ−1i∗V(Ean))
?

- Wy

Lemma (3.4.3) tells us that the composed horizontal maps are isomorphisms,
and it follows from the definitions that the resulting map Vx → Vy is the
cospecialization map cosp∗x̃,ỹ. In particular, condition (3) of the definition
(3.2.4) is satisfied. Since these maps are automatically compatible with the
operations of π1(P ), the lemma is proved.

Lemma 3.4.6 Let E be a coherent sheaf on Xan and let

Ẽ := τ−1E ⊗τ−1OX
ÕlogX .

Then the natural map E → RτΛ
∗ Ẽ is a quasi-isomorphism.

Proof: It suffices to prove that the stalk of this natural map at every point
x of X is an isomorphism. Since τ is a proper morphism of paracompact
Hausdorff spaces, the natural map

(RτΛ
∗ Ẽ)x → RΓΛ(τ−1(x), i−1Ẽ)

is an isomorphism, where i : τ−1(x)→ Xlog is the inclusion. Recall that the su-
perscript Λ means taking the degree zero part in the grading, which commutes
with cohomology. The degree zero part of Ẽ is just τ−1E⊗OlogX . Furthermore,
the fiber τ−1(x) is a torus and Ẽ is locally constant on the fiber, so the sheaf
cohomology is the same as group cohomology, computed with respect to the
action of the fundamental group Ix on any stalk. Thus it suffices to show that
Hq(Ix, Ex ⊗ OlogX,z) = 0 if q > 0 and is Ex if q = 0. We may assume that
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X = AP, with P a sharp toric monoid, so that OlogX,z ∼= OX,z ⊗C Γ·(Ω). The
action of Ix is unipotent, and its logarithm is a nilpotent T -Higgs field. Thus
by (1.4.4) the group cohomology can be identified with the Higgs cohomology.
But this Higgs complex is just Ex tensored with the Higgs complex of Γ·(Ω),
which is a resolution of C.

To prove that V is fully faithful, let Ei be objects of MICΛ
coh(Xan) and let

Vi := V(Ei), for i = 1, 2. Since V is functorial, it induces a map of sheaves of
C-vector spaces Hom(E1, E2) → τ∗Hom(V1, V2). It suffices to prove that this
map of sheaves is an isomorphism, and to do this it suffices to check that its
stalk at each point x is so. Then we may assume that X = AP,K, where P is a
sharp toric monoid and that x is the vertex, and that each Ei comes from an
object of MICΛx

coh(P,K). Then the Vi can be identified with the corresponding
equivariant Riemann-Hilbert transforms, and τ∗ with the invariants under the
log inertia group π1(P ). Then the result follows from the full faithfulness of
the equivariant Riemann-Hilbert transform.
To prove that V is essentially surjective, let V be an object of LΛ

coh(C
log
X )

and let x be a point of X. Then by (2.1.2) and (1.4.8), there exists an analytic
neighborhood U of x and an object (E,∇) of MICΛ

coh(U) such that V(E,∇)x ∼=
Vx. Then in fact V(E,∇) ∼= V on some possibly smaller neighborhood of x.
We can glue these objects of MICΛ

coh using the gluing data coming from V and
the full faithfulness of V.
This completes the proof of (1) and (2) of the theorem. Parts (a) and (b) of (3)
follow immediately from (3.4.3). For part (c), note that for each q, the natural
map

E ⊗ ΩqX/C → RτΛ
∗ Ẽ ⊗ Ω̃q,logX/C

is a quasi-isomorphism, by (3.4.6), and hence the map in (c) is also a quasi-
isomorphism.

Associated to the Λ-grading of the category LΛ
coh(X) is a Λ-filtration, where

Λ is regarded as a sheaf of partially ordered sets, with the partial ordering
induced by the action of −MX . This filtration carries over to the equivalent
category MICΛ

coh(X). Matthew Emerton has pointed out that this gives a log
construction of the “Kashiwara-Malgrange V -filtration.”

Corollary 3.4.7 Any object (E,∇) of MICΛ
coh(Xan) admits a unique and

functorial decreasing filtration indexed by the sheaf of partially ordered set Λ,
such that V(FλE) = ⊕λ′≥λVλ′(E,∇). If (E′,∇) is a subobject of (E,∇), then
E′
x ⊆ FλEx if and only if all the exponents of E′ at x are greater than or equal

to λ in the partial ordering on Λ induced by the action of −MX,x.

Remark 3.4.8 It is easy to see, for example from the compatibility of the
local and global Riemann-Hilbert correspondence, that if (E,∇) is an object
of MICcoh(Xan), then E is locally free (resp. torsion free, resp. reflexive) over
OX if and only if V(E,∇) is locally free (resp. . . . ) over Clog

X .
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As an illustration of the content of the main theorem (3.4.2), let us show how
it easily implies a logarithmic version of Deligne’s comparison theorem [3, II,
3.13]

Theorem 3.4.9 Let X/C be an fs smooth log scheme (with no idealized struc-
ture) and let (E,∇) be a torsion-free object of MICΛ

coh(Xan). At each point of
x, let Sx ⊆ Λx ⊆ C ⊗Mgp

X,x be the set of exponents of (E,∇) at x. Suppose
that for each such x, Sx ∩M

gp

X,x ⊆MX,x. Then the natural map

H∗
DR(Xan, E)→ H∗

DR(X∗
an, E)

is an isomorphism.

Proof: Let E∗ := j∗E, let V := V(E,∇), and let V ∗ := V(E∗,∇), which
we can regard as a locally constant sheaf of C-vector spaces on X∗. Theo-
rem (3.4.2) provides a commutative diagram in the derived category:

E ⊗ Ω·X/C - Rj∗(E∗ ⊗ Ω·X∗/C)

RτΛ
∗ V

?
- Rj∗V

∗,
?

in which the vertical arrows are quasi-isomorphisms. Thus it suffices to show
that the bottom horizontal arrow is a quasi-isomorphism.
By (3.1.2), V ′ := jlog∗V

∗ is a local system of C-vector spaces on Xlog, and
jlog∗V

∗ ∼= Rjlog∗V
∗. Thus it suffices to show that the natural map

RτΛ
∗ V → Rτ∗V

′

is a quasi-isomorphism. This is a local question, and so we can restrict our
attention to a neighborhood of a point x of X. If x̃ ∈ τ−1(x), then Vx̃ and V ′

x̃

are equipped with actions of Ix, and we have to prove that the maps

Hi(Ix, V0,x̃)→ Hi(Ix, V ′
x̃) (3.4.3)

are isomorphisms. Here V is a Λx-graded C[−MX,x]-module, and the 0 means
the degree zero part.
It follows from the coherence of V that V ′

x̃ can be identified with the tensor
product of Vx̃ over the map C[−MX,x] → C sending MX,x to 1. It follows
from (2.1.3) and the hypothesis on the exponents that the set of degrees of a
set of generators for V intersected with M

gp

X,x is contained in MX,x. Hence
Corollary (1.4.6) implies that (3.4.3) is an isomorphism.
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Theorem 3.4.10 Let X/C be a smooth fs log scheme (with no idealized struc-
ture) and let (E,∇) be an object of MICΛ

coh(Xan/C). Let j : X∗ → X be the
inclusion of the maximal open set where the log structure is trivial. Then the
natural map

j∗j
∗
mE ⊗ Ω·X/C → j∗j

∗E ⊗ Ω·X/C
is a quasi-isomorphism, where j∗j∗m means the sheaf of sections of E with mero-
morphic poles along X \X∗.

Proof: Fix a point x in X. It suffice to prove the theorem in a neighborhood
of x. Thus we may assume that X = AP for some toric monoid P . Let m be the
sum of a minimal set of generators for P and let J be the ideal of P generated
by m. The support of the corresponding closed subscheme of X is exactly the
set where the log structure is nontrivial. The ideal I of OX generated by β(m)
is an invertible sheaf of ideals, and its inverse defines an effective divisor D
whose support is X \X∗. Thus for any E, j∗j∗mE = lim−→E(nD). Since I comes
from a sheaf of ideals in the monoid, it is stable under the connection d on OX .
In particular, α(m) generates I and dα(m) = α(m)dlogm ∈ I ⊗ Ω1

X/C. By
definition (2.1.1), −mx is the unique exponent of this connection at x. Then
the dual OX(D) has a connection also, and its unique exponent is mx. If s is
any element of M

gp

X , s + nmx ∈ MX for n sufficiently large. It follows that,
locally on X, there exists an n such that E(nD) satisfies the hypothesis of
(3.4.9) for n sufficiently large. By the previous result, the map

E(nD)⊗ Ω·X/C → j∗j
∗E ⊗ Ω·X/C

is a quasi-isomorphism for all n sufficiently large. Hence the same is true for
the map from the direct limit.
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