Logarithmic Geometry

Arthur Ogus

October 1, 2009, Berkeley
Outline

Introduction

The Language of Log Geometry

The Category of Log Schemes

The Geometry of Log Schemes

Applications

Conclusion
Emphasis

- What it’s for
- How it works
- What it looks like
History

Founders:
Deligne, Faltings, Fontaine–Illusie, Kazuya Kato, Chikara Nakayama, many others

Log geometry in this form was invented discovered assembled in the 80’s by Fontaine and Illusie with hope of studying p-adic Galois representations associated to varieties with bad reduction. Carried out by Kato, Tsuji, Faltings, and others. (The C_{st} conjecture.)

I’ll emphasize geometric analogs—currently very active—today. Related to toric and tropical geometry
Motivating problem 1: Compactification

Consider

\[S^* \xrightarrow{j} S \xleftarrow{i} Z \]

\(j \) an open immersion, \(i \) its complementary closed immersion. For example: \(S^* \) a moduli space of “smooth” objects, inside some space \(S \) of “stable” objects, \(Z \) the “degenerate” locus.

Log structure is “magic powder” which when added to \(S \) “remembers \(S^* \).”
Motivating problem 2: Degeneration

Study families, i.e., morphisms

\[
\begin{array}{cccc}
X^* & \rightarrow & X & \leftarrow & Y \\
\downarrow f^* & & \downarrow f & & \downarrow g \\
S^* & \rightarrow & S & \leftarrow & Z \\
j & & i & & \\
\end{array}
\]

Here \(f^* \) is smooth but \(f \) and \(g \) are only log smooth (magic powder).
The log structure allows \(f \) and even \(g \) to somehow “remember” \(f^* \).
Benefits

- Log smooth maps can be understood locally, (but are still much more complicated than classically smooth maps).
- Degenerations can be studied locally on the singular locus Z.
- Log geometry has natural cohomology theories:
 - Betti
 - De Rham
 - Crystalline
 - Etale
Roots and ingredients

- Toroidal embeddings and toric geometry
- Regular singular points of ODE’s, log poles and differentials
- Degenerations of Hodge structures

Remark: A key difference between local toric geometry and local log geometry:

- toric geometry based on study of cones and monoids.
- log geometry based on study of morphisms of cones and monoids.
Some applications

- Compactifying moduli spaces: K3’s, abelian varieties, curves, covering spaces
- Moduli and degenerations of Hodge structures
- Crystalline and étale cohomology in the presence of bad reduction—C_{st} conjecture
- Work of Gabber and others on resolution of singularities (uniformization)
- Work of Gross and Siebert on mirror symmetry
What is Log Geometry?

What is geometry? How do we do geometry?
Locally ringed spaces: Algebra + Geometry

- Space: Topological space X (or topos): $X = (X, \{U \subseteq X\})$
- Ring: $(R, +, \cdot, 1_R)$ (usually commutative)
- Monoid: $(M, \cdot, 1_M)$ (usually commutative and cancellative)

Definition
A locally ringed space is a pair (X, \mathcal{O}_X), where

- X is a topological space (or topos)
- $\mathcal{O}_X : \{\mathcal{O}_X(U) : U \subseteq X\}$ a sheaf of rings on X

such that for each $x \in X$, the stalk $\mathcal{O}_{X,x}$ is a local ring.
Example

\(X \) a complex manifold:
For each open \(U \subseteq X \), \(O_X(U) \) is the ring of analytic functions \(U \rightarrow \mathbb{C} \).
\(O_{X,x} \) is the set of germs of functions at \(x \),
\(m_{X,x} := \{ f : f(x) = 0 \} \) is its unique maximal ideal.
Example: Compactification log structures

X scheme or analytic space, Y closed algebraic or analytic subset, $X^\ast = X \setminus Y$

\[
\begin{array}{ccc}
X^\ast & \xrightarrow{j} & X \\
& i & \leftarrow Y
\end{array}
\]

Instead of the sheaf of ideals:

\[
I_Y := \{ a \in O_X : i^*(a) = 0 \} \subseteq O_X
\]

consider the sheaf of multiplicative submonoids:

\[
M_{X^\ast/X} := \{ a \in O_X : j^*(a) \in O_{X^\ast}^\ast \} \subseteq O_X.
\]

Log structure:

\[
\alpha_{X^\ast/X} : M_{X^\ast/X} \rightarrow O_X \text{ (the inclusion mapping)}
\]
Notes

- This is generally useless unless codim \((Y, X) = 1\).
- \(\mathcal{M}_{X^*/X}\) is a sheaf of faces of \(\mathcal{O}_X\), i.e., a sheaf \(\mathcal{F}\) of submonoids such that \(fg \in \mathcal{F}\) implies \(f, g \in \mathcal{F}\).
- There is an exact sequence:

\[
0 \to \mathcal{O}^*_X \to \mathcal{M}_{X^*/X} \to \Gamma_Y(Div_X^-) \to 0.
\]
Definition of log structures

Let \((X, \mathcal{O}_X)\) be a locally ringed space (e.g. a scheme or analytic space).
A prelog structure on \(X\) is a morphism of sheaves of (commutative) monoids

\[\alpha_X: \mathcal{M}_X \to \mathcal{O}_X. \]

It is a log structure if

\[\alpha^{-1}(\mathcal{O}_X^*) \to \mathcal{O}_X^* \]

is an isomorphism. (In this case \(\mathcal{M}_X^* \cong \mathcal{O}_X^*\).)

Examples:

- \(\mathcal{M}_{X/X} = \mathcal{O}_X^*\), the trivial log structure
- \(\mathcal{M}_{\emptyset/X} = \mathcal{O}_X\), the empty log structure.
Logarithmic spaces

A log space is a pair \((X, \alpha_X)\), and a morphism of log spaces is a triple \((f, f^\#, f^\flat)\):

\[
f : X \to Y, f^\# : f^{-1}(\mathcal{O}_Y) \to \mathcal{O}_X, f^\flat : f^{-1}(\mathcal{M}_Y) \to \mathcal{M}_X
\]

Just write \(X\) for \((X, \alpha_X)\) when possible.

If \(X\) is a log space, let \(\underline{X}\) be \(X\) with the trivial log structure. There is a canonical map of log spaces:

\[
\underline{X} \to X : (X, \mathcal{M}_X \to \mathcal{O}_X) \to (X, \mathcal{O}_X^* \to \mathcal{O}_X)
\]

\[
(id : X \to X, id : \mathcal{O}_X \to \mathcal{O}_X, inc : \mathcal{O}_X^* \to \mathcal{M}_X)
\]

Variant: Idealized log structures

Add \(\mathcal{K}_X \subseteq \mathcal{M}_X\), sheaf of ideals, such that \(\alpha_X : (\mathcal{M}_X, \mathcal{K}_X) \to (\mathcal{O}_X, 0)\).
Example: torus embeddings and toric varieties

Example

The log line: A^1, with the compactification log structure from:

$$
\begin{array}{ccc}
G_m & \xrightarrow{j} & A^1 \\
& & \leftarrow^i 0 \\
on points: & \mathbb{C}^* & \longrightarrow_{i} \mathbb{C} \quad \leftarrow 0.
\end{array}
$$

Generalization

$$(G_m)^r \subseteq A_Q$$

Here $(G_m)^r$ is a commutative group scheme: a (noncompact) torus,

A_Q will be a monoid scheme, coming from a toric monoid Q, with $Q^{gp} \cong \mathbb{Z}^r$.
Notation Let Q be a cancellative commutative monoid.

$Q^* :=$ the largest group contained in Q.
$Q^{gp} :=$ the smallest group containing Q.
$\overline{Q} := Q / Q^*$.

$\text{Spec } Q$ is the set of prime ideals of Q, i.e, the complements of the faces of Q.

N.B. A face of Q is a submonoid F which contains a and b whenever it contains $a + b$.

Terminology: We say Q is:

- **integral** if Q is cancellative
- **fine** if Q is integral and finitely generated
- **saturated** if Q is integral and $nx \in Q$ implies $x \in Q$, for $x \in Q^{gp}$, $n \in \mathbb{N}$
- **toric** if Q is fine and saturated and Q^{gp} is torsion free
- **sharp** if $Q^* = 0$.
Generalization: toric varieties

Assume Q is toric (so $Q^{gp} \cong \mathbb{Z}^r$ for some r). Let

$$A^*_Q := \text{Spec } \mathbb{C}[Q^{gp}],$$

a group scheme (torus). Thus

$$A^*_Q(\mathbb{C}) = \{ Q^{gp} \to \mathbb{C}^* \} \cong (\mathbb{C}^*)^r, \quad \mathcal{O}_{A^*_Q}(A^*_Q) = \mathbb{C}[Q^{gp}]$$

$$A_Q := \text{Spec } \mathbb{C}[Q],$$

a monoid scheme. Thus

$$A_Q(\mathbb{C}) = \{ Q \to \mathbb{C} \}, \quad \mathcal{O}_{A_Q}(A_Q) = \mathbb{C}[Q]$$

$$A_Q := \text{the log scheme given by the open immersion } j : A^*_Q \to A_Q.$$

Have $\Gamma(\mathcal{M}) \cong \mathbb{C}^* \oplus Q$.
Examples

- If $Q = \mathbb{N}^r$, $A_Q(\mathbb{C}) = \mathbb{C}^r$, $A_Q^*(\mathbb{C}) = (\mathbb{C}^*)^r$.

- If Q is the submonoid of \mathbb{Z}^4 spanned by
 \{(1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)\}, then

 $$A_Q(\mathbb{C}) = \{(z_1, z_2, z_3, z_4) \in \mathbb{C}^4 : z_1z_2 = z_3z_4\}.$$

 $$A_Q^* \cong (\mathbb{C}^*)^3.$$
Pictures

Pictures of Q:
$	ext{Spec } Q$ is a finite topological space. Its points correspond to the orbits of the action of \mathbb{A}_Q^* on \mathbb{A}_Q, and to the faces of the cone C_Q spanned by Q.

Pictures of a log scheme X
Embellish picture of X by attaching $\text{Spec } \mathcal{M}_{X,x}$ to X at x.
Example: The log line \((Q = \mathbb{N}, C_Q = \mathbb{R}_{\geq})\)

\[
\text{Spec}(\mathbb{N})
\]

\[
\text{Spec}(\mathbb{N} \rightarrow \mathbb{C}[\mathbb{N}])
\]
Example: The log plane \((Q = \mathbb{N} \oplus \mathbb{N}, \ C_Q = \mathbb{R}_{\geq} \times \mathbb{R}_{\geq})\)
Log points

The standard (hollow) log point

\[t := \text{Spec } \mathbb{C}. \text{ (One point space). } \mathcal{O}_t = \mathbb{C} \text{ (constants)} \]

Add log structure:

\[\alpha : \mathcal{M}_t := \mathbb{C}^* \oplus \mathbb{N} \rightarrow \mathbb{C} \quad (u, n) \mapsto u0^n = \begin{cases} u & \text{if } q = 0 \\ 0 & \text{otherwise} \end{cases} \]

We usually write \(P \) for a log point.

Generalizations

- Replace \(\mathbb{C} \) by any field.
- Replace \(\mathbb{N} \) by any sharp monoid \(Q \).
- Add ideal to \(Q \).
Example: log disks

V a discrete valuation ring, e.g, $\mathbb{C}\{t\}$ (germs of holomorphic functions)

$K := \text{frac}(V), m_V := \text{max}(V), k_V := V/m_V,$

$\pi \in m_V$ uniformizer, $V' := V \setminus \{0\} \cong V^* \oplus \mathbb{N}$

$T := \text{Spec } V = \{\tau, t\}, \tau := T^* := \text{Spec } K, t := \text{Spec } k.$

Log structures on T: $\Gamma(\alpha_T): \Gamma(T, M_T) \to \Gamma(T, \mathcal{O}_T)$:

- trivial: $\alpha_{T/T} = V^* \to V$ (inclusion): T_{triv}
- standard: $\alpha_{T^*/T} = V' \to V$ (inclusion): T_{std}
- hollow: $\alpha_{\text{hol}} = V' \to V$ (inclusion on V^*, 0 on m_V): T_{hol}
- split$_m$ $\alpha_m = V^* \oplus \mathbb{N} \to V$ (inc, $1 \mapsto \pi^m$): T_{spl_m}

Note: $T_{\text{spl}_1} \cong T_{\text{std}}$ and $T_{\text{spl}_m} \to T_{\text{hol}}$ as $m \to \infty$
Inducing log structures

Pullback and pushforward

Given a map of locally ringed spaces $f: X \to Y$, we can:

Pushforward a log structure on X to Y: $f_*(\mathcal{M}_X) \to \mathcal{O}_Y$.

Pullback a log structure on Y to X: $f^*(\mathcal{M}_Y) \to \mathcal{O}_X$.

A morphism of log spaces is *strict* if $f^*(\mathcal{M}_Y) \to \mathcal{M}_X$ is an isomorphism.

A *chart* for a log space is strict map $X \to \mathbb{A}^Q$ for some Q.

A log space (or structure) is *coherent* if locally on X it admits a chart.

Generalization: *relatively coherent* log structures.
Example: Log disks and log points

Let T be a log disk, t its origin. Then the log structure on T induces a log structure on t:

<table>
<thead>
<tr>
<th>Log structure on T</th>
<th>Induced structure on t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial</td>
<td>Trivial</td>
</tr>
<tr>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>Hollow</td>
<td>Standard</td>
</tr>
<tr>
<td>Split</td>
<td>Standard</td>
</tr>
</tbody>
</table>
Fiber products

The category of coherent log schemes has fiber products. \(\mathcal{M}_{X \times_Z Y} \to \mathcal{O}_{X \times_Z Y} \) is the log structure associated to

\[
p^{-1}_X \mathcal{M}_X \oplus p^{-1}_Z \mathcal{M}_Z \overset{p^{-1}_Y \mathcal{M}_Y}{\to} \mathcal{O}_{X \times_Z Y}.
\]

Danger: \(\mathcal{M}_{X \times_Z Y} \) may not be integral or saturated. Fixing this can “damage” the underlying space \(X \times_Z Y \).
Properties of monoid homomorphisms

A morphism $\theta: P \to Q$ of integral monoids is

- **strict** if $\bar{\theta}: \bar{P} \to \bar{Q}$ is an isomorphism
- **local** if $\theta^{-1}(Q^*) = P^*$
- **vertical** if $Q/P := \text{Im}(Q \to \text{Cok}(\theta^{gp}))$ is a group.
- **exact** if $P = (\theta^{gp})^{-1}(Q) \subseteq P^{gp}$

A morphism of log schemes $f: X \to Y$ has P if for every $x \in X$, the map $f^\flat: M_{Y,f(x)} \to M_{X,x}$ has P.

Examples of monoid homomorphisms

Examples:

- $\mathbb{N} \to \mathbb{N} \oplus \mathbb{N} : n \mapsto (n, n)$
 $\mathbb{C}^2 \to \mathbb{C} : (z_1, z_2) \mapsto z_1 z_2$
 Local, exact, and vertical.

- $\mathbb{N} \oplus \mathbb{N} \to \mathbb{N} \oplus \mathbb{N} : (m, n) \mapsto (m, m + n)$
 $\mathbb{C}^2 \to \mathbb{C}^2 : (z_1, z_2) \mapsto (z_1, z_1 z_2)$ (blowup)
 Local, not exact, vertical

- $\mathbb{N} \to Q := \langle q_1, q_2, q_3, q_4 \rangle/(q_1 + q_2 = q_3 + q_4) : n \mapsto n q_4$
 Local, exact, not vertical.
Differentials

Let $f : X \to Y$ be a morphism of log schemes,
Universal derivation:

$$(d, \delta) : (\mathcal{O}_X, \mathcal{M}_X) \to \Omega^1_{X/Y} \quad \text{(some write } \omega^1_{X/Y})$$

$$d\alpha(m) = \alpha(m)\delta(m) \quad \text{so } \delta(m) = d \log m \quad \text{(sic)}$$

Geometric construction:
(gives relation to deformation theory)
Infinitesimal neighborhoods of diagonal $X \to X \times_Y X$ made strict:
$X \to \mathcal{P}^N_{X/Y}, \Omega^1_{X/Y} = J/J^2$.
If \(\alpha_X = \alpha_{X^*/X} \) where \(Z := X \setminus X^* \) is a DNC relative to \(Y \),

\[
\Omega^1_{X/Y} = \Omega^1_{\log Z}
\]

In coordinates \((t_1, \ldots t_n)\), \(Z \) defined by \(t_1 \cdots t_r = 0 \).
\(\Omega^1_{X/Y} \) has basis: \((dt_1/t_1, \ldots dt_r/t_r, dt_{r+1} \ldots dt_n)\).
Logarithmic de Rham complex

\[0 \to \mathcal{O}_X \to \Omega^1_{X/Y} \to \Omega^2_{X/Y} \cdots \]

Logarithmic connections:

\[\nabla : E \to \Omega^1_{X/Y} \otimes E \]

satisfying Liebnitz rule + integrability condition: \(\nabla^2 = 0 \).

Generalized de Rham complex

\[0 \to E \to E \otimes \Omega^1_{X/Y} \to E \otimes \Omega^2_{X/Y} \cdots \]
Smooth morphisms

The definition of smoothness of a morphism \(f : X \to Y \) follows Grothendieck’s geometric idea: “formal fibration”: Consider diagrams:

\[
\begin{array}{ccc}
T & \xrightarrow{g} & X \\
\downarrow{i} & & \downarrow{f} \\
T' & \xrightarrow{h} & Y
\end{array}
\]

Here \(i \) is a strict nilpotent immersion. Then \(f : X \to Y \) is

- **smooth** if \(g' \) always exists, locally on \(T \),
- **unramified** if \(g' \) is always unique,
- **étale** if \(g' \) always exists and is unique.
Examples: monoid schemes and tori

Let \(\theta : P \to Q \) be a morphism of toric monoids. \(R \) a base ring. Then the following are equivalent:

- \(A_\theta : A_Q \to A_P \) is smooth
- \(A^*_\theta : A^*_Q \to A^*_P \) is smooth
- \(R \otimes \text{Ker}(\theta^{gp}) = R \otimes \text{Cok}(\theta^{gp})_{\text{tors}} = 0 \)

Similarly for étale and unramified maps.
In general, smooth (resp. unramified, étale) maps look locally like these examples.
The space X_{\log} (Kato–Nakayama)

X/\mathbb{C}: (relatively) fine log scheme of finite type,

X_{an}: its associated log analytic space.

X_{\log}: topological space, defined as follows:

Underlying set: the set of pairs (x, σ), where $x \in X_{an}$ and

$\mathcal{O}^*_{X,x} \xrightarrow{X^\#} \mathbb{C}^* \xrightarrow{u} u/u|u|$

commutes. Hence:

$X_{\log} \xrightarrow{\tau} X_{an} \xrightarrow{\alpha} X$
Each $m \in \tau^{-1}M_X$ defines a function $\text{arg}(m) : X_{\log} \to S^1$. X_{\log} is given the weakest topology so that $\tau : X_{\log} \to X_{an}$ and all $\text{arg}(m)$ are continuous.

Get $\tau^{-1}M_X^{gp} \xrightarrow{\text{arg}} S^1$ extending arg on $\tau^{-1}O_X^*$.

Define *sheaf of logarithms of sections of* $\tau^{-1}M_X^{gp}$:

$$
\begin{array}{ccc}
\mathcal{L}_X & \xrightarrow{\text{exp}} & S^1 \\
\downarrow & & \downarrow \\
\mathbb{R}(1) & \xrightarrow{\text{exp}} & S^1
\end{array}
$$
Get “exponential” sequence:

\[
0 \to \mathbb{Z}(1) \to \tau^{-1}\mathcal{O}_X \to \tau^{-1}\mathcal{O}_X^* \to 0
\]

\[
0 \to \mathbb{Z}(1) \to \mathcal{L}_X \to \tau^{-1}\mathcal{M}^{gp}_X \to 0
\]

Here: \(\tau^{-1}\mathcal{O}_X \to \mathcal{L}_X : a \mapsto (\exp a, \text{Im}(a)) \in \tau^{-1}\mathcal{M}^{gp}_X \times \mathbb{R}(1) \).

Construct universal sheaf of \(\tau^{-1}\mathcal{O}_X \)-algebras \(\mathcal{O}_X^{log} \) containing \(\mathcal{L}_X \)
Compactification of open immersions

The map τ is an isomorphism over the set X^* where $M = 0$, so we get a diagram

$$
\begin{array}{ccc}
X_{an} & \xrightarrow{j} & X_{an} \\
\downarrow \tau & & \downarrow \tau \\
X_{log} & \xrightarrow{j_{log}} & X_{log}
\end{array}
$$

The map τ is proper, and for $x \in X$, $\tau^{-1}(x)$ is a torsor under $T_x := \text{Hom}(M_{x}^{gp}, S^1)$ (a finite sum of compact tori). We think of τ as a relative compactification of j.
Example: monoid schemes

\[X = A_Q := \text{Spec}(Q \to \mathbb{C}[Q]), \text{ with } Q \text{ toric.} \]

\[X_{\log} = A_Q^{\log} = R_Q \times T_Q \xrightarrow{\tau} X = \overline{A}_Q \]

where

\[A_Q(\mathbb{C}) = \{ z : Q \to (\mathbb{C}, \cdot) \} \text{ (algebraic set)} \]

\[R_Q := \{ r : Q \to (\mathbb{R}_\geq, \cdot) \} \text{ (semialgebraic set)} \]

\[T_Q := \{ \zeta : Q \to (\mathbb{S}^1, \cdot) \} \text{ (compact torus)} \]

\[\tau : R_Q \times T_Q \to A_Q(\mathbb{C}) \text{ is multiplication: } z = r\zeta. \]

So \(A_Q^{\log} \) means polar coordinates for \(\overline{A}_Q \).
Example: log line, log point

If $X = \mathbb{A}_N$, then $X_{\text{log}} = \mathbb{R}_{\geq} \times S^1$.

![Diagram](image-url)
or

(Real blowup)

If $X = P = x_\mathbb{N}$, $X_{\log} = S^1$.

\[
\begin{array}{c}
\text{circle} \\ \rightarrow
\end{array}
\quad \rightarrow \\
\text{circle}
\]
Example: \mathcal{O}_P^{log}

$$\Gamma(P_{log}, \mathcal{O}_P^{log}) = \Gamma(S^1_{log}, \mathcal{O}_P^{log}) = \mathbb{C}.$$

Pull back to universal cover $\exp : \mathbb{R}(1) \to S^1$

$$\Gamma(\mathbb{R}(1), \exp^* \mathcal{O}_P^{log}) = \mathbb{C}[\theta],$$
generated by θ (that is, $\log(0))$.

Then $\pi_1(P_{log}) = Aut(\mathbb{R}(1)/S^1) = \mathbb{Z}(1)$ acts, as the unique automorphism such that $\rho_\gamma(\theta) = \theta + \gamma$. In fact, if $N = d/d\theta$,

$$\rho_\gamma = e^{\gamma N}.$$
Application—Compactification

Theme: j_{log} compactifies $X^* \rightarrow X$ by adding a boundary.

Theorem
If X/\mathbb{C} is (relatively) smooth, $j_{\text{log}} : X^*_\text{an} \rightarrow X_{\text{log}}$ is locally aspheric. In fact, $(X_{\text{log}}, X_{\text{log}} \setminus X^*_\text{an})$ is a manifold with boundary.

Proof.
Reduce to the case $X = A_Q$. Reduce to (R_Q, R^*_Q). Use the moment map, a homeomorphism:

$$(R_Q, R^*_Q) \cong (C_Q, C^o_Q) : r \mapsto \sum_{a \in A} r(a) a$$

where A is a finite set of generators of Q and C_Q is the real cone spanned by Q.

Example: The log line
Cohomology of log compactifications

Let X/\mathbb{C} be (relatively) smooth, and X^* the open set where the log structure is trivial.

Theorem

\[
\begin{align*}
H^*(X_{\log}, \mathbb{Z}) & \cong H^*(X^*, \mathbb{Z}) \\
& \cong H^*(X_{an}, \mathbb{Z})
\end{align*}
\]
Log de Rham cohomology

Three de Rham complexes:

- $\Omega^\cdot_{X/\mathbb{C}}$ (log DR complex on X)
- $\Omega^{log^\cdot}_{X/\mathbb{C}}$ (log DR complex on X_{log})
- $\Omega^{\cdot}_{X^*/\mathbb{C}}$ (ordinary DR complex on X^*)

Theorem:
There is a commutative diagram of isomorphisms:

$$
\begin{align*}
H_{DR}(X) & \longrightarrow H_{DR}(X_{log}) \longrightarrow H_{DR}(X^*) \\
\downarrow & \downarrow \\
H_B(X_{log}, \mathbb{C}) & \longrightarrow H_B(X_{an}^*, \mathbb{C})
\end{align*}
$$
X/S (relatively) smooth map of log schemes.

Theorem (Riemann-Hilbert)

Let X/\mathbb{C} be (relatively) smooth. Then there is an equivalence of categories:

$$MIC_{nil}(X/\mathbb{C}) \equiv L_{un}(X_{\log})$$

$$(E, \nabla) \mapsto \text{Ker}(\tau^{-1}E \otimes \mathcal{O}^\log_X \overset{\nabla}{\longrightarrow} \tau^{-1}E \otimes \Omega^1_{X,\log})$$
Example: $X := P$ (Standard log point)

$\Omega^1_{P/C} \cong N \otimes \mathbb{C} \cong \mathbb{C}$, so

$MIC(P/C) \equiv \{(E, N) : \text{vector space with endomorphism}\}$

$P_{log} = S^1$, so $L(P_{log})$ is cat of reps of $\pi_1(P_{log}) \cong \mathbb{Z}(1)$. Thus:

$L(P_{log}) \equiv \{(V, \rho) : \text{vector space with automorphism}\}$

Conclusion:

$\{(E, N) : N \text{ is nilpotent}\} \equiv \{(V, \rho) : \rho \text{ is unipotent}\}$

Use $O^\log_P = \mathbb{C}[\theta]$:

$$(V, \rho) = \text{Ker} \left(\tau^* E \otimes \mathbb{C}[\theta] \to \tau^* E \otimes \mathbb{C}[\theta] \right)$$

$N \mapsto e^{2\pi i N}$
Application: Degenerations

Theme: replacing f by f_{\log} smooth out singularities of mappings.

Theorem (Nakayama-Ogus)

Let $f : X \to S$ be a (relatively) smooth exact morphism. Then $f_{\log} : X_{\log} \to S_{\log}$ is a topological submersion, whose fibers are orientable topological manifolds with boundary. The boundary corresponds to the set where f_{\log} is not vertical.
Example

Semistable reduction $\mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C} : (x_1, x_2) \mapsto x_1 x_2$
This is A_θ, where $\theta : \mathbb{N} \rightarrow \mathbb{N} \oplus \mathbb{N} : n \mapsto (n, n)$
Topology changes: (We just draw $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$):

![Diagram of topology changes]
Log picture: $R_Q \times T_Q$

Just draw $R_Q \to R_\mathbb{N}: \mathbb{R}_\geq \times \mathbb{R}_\geq \to \mathbb{R}_\geq : (x_1, x_2) \mapsto x_1 x_2$

Topology unchanged, and in fact is homeomorphic to projection mapping. Proof: (Key is exactness of f, integrality of C_θ.)
Consequences

Theorem

\(f : X \to S \) (relatively) smooth, proper, and exact,

1. \(f_{\log} : X_{\log} \to S_{\log} \) is a fiber bundle, and

2. \(R^q f_{\log*}(\mathbb{Z}) \) is locally constant on \(S_{\log} \).
Monodromy

In the above situation, $R^q f_*(Z)$ defines a representation of $\pi_1(S_{\log})$. We can study it locally, using $X_{\log} \to X \times S_{\log}$. (Vanishing cycles)
Restrict to $D \subseteq S$, D a log disk. Even better: to $P \subseteq D$, P a log point.

Theorem
Let $X \to P$ be (relatively) smooth, saturated, and exact.

- The action of $\pi_1(P_{\log})$ on $R^q f_*(Z)$ is unipotent.
- Generalized Picard-Lefschetz formula for graded version of action in terms of linear data coming from: $\overline{M}_P \to \overline{M}_X$.

Proof uses a log construction of the Steenbrink complex

$$\Psi^\cdot : = \mathcal{O}_P^{\log} \to \mathcal{O}_P^{\log} \otimes \Omega^1_{X/P} \otimes \cdots$$
Example: Dwork families

Degree 3: Family of cubic curves in $P^3 : X \rightarrow S$:

$$t(X_0^3 + X_1^3 + X_2^3) - 3X_0X_1X_2 = 0$$

At $t = 0$, get union of three complex lines: At $t = \infty$, get smooth elliptic curve.

$X_{log} \rightarrow S_{log}$ is a fibration. How can this be?
Fibers of $X \to S$
Fibers of $X_{\log} \rightarrow S_{\log}$
Dehn twist
Degree 4:

\[t(X_0^4 + X_1^4 + X_2^4 + X_3^4) - 4X_0X_1X_2X_3 = 0 \]

At \(t - 0 \), get a (complex) tetrahedron. At \(t = \infty \), get a K3 surface. Need to use \textit{relatively} coherent log structure for verticality. Still get a fibration!
Degree 5:

\[t(X_0^5 + X_1^5 + X_2^5 + X_3^5 + X_4^5) - 5X_0X_1X_2X_3X_4 = 0 \]

Famous Calabi-Yau family from mirror symmetry. Also used in proof of Sato-Tate

Nostalgia

\(t = 5/3 \) was subject of my first colloquium at Berkeley more than thirty years ago.
Conclusion

- Log geometry provides a uniform geometric perspective to treat compactification and degeneration problems in topology and in algebraic and arithmetic geometry.
- Log geometry incorporates many classical tools and techniques.
- Log geometry is not a revolution.
- Log geometry presents new problems and perspectives, both in fundamentals and in applications.
Log:
It’s better than bad, it’s good.