Vector Spaces

A vector space is a set V together with two operations, vector addition and scalar multiplication, satisfying the following axioms.

- 1. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ if \mathbf{u} and \mathbf{v} are in V.
- 2. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ if \mathbf{u}, \mathbf{v} , and \mathbf{w} are in V.
- There exists a 0 in V such that 0 + v = v for all v in V.
- 4. For every **v** in V there exists a $-\mathbf{v}$ in V such that $\mathbf{v} + -\mathbf{v} = \mathbf{0}$.
- 5. $r(\mathbf{u} + \mathbf{v}) = r\mathbf{u} + r\mathbf{v}$ if r is in R and \mathbf{u}, \mathbf{v} are in V.
- 6. $(r+s)\mathbf{v} = r\mathbf{v} + s\mathbf{v}$ if r, s are in R and \mathbf{v} is in V.
- 7. $(rs)\mathbf{v} = r(s\mathbf{v})$ if r, s in R and \mathbf{v} is in V.
- 8. $1\mathbf{v} = \mathbf{v}$ if \mathbf{v} is in V.

– Typeset by Foil $\mathrm{T}_{E}\mathrm{X}$ –

Some key concepts

- 1. Linear subspaces
- 2. Linear combinations
- 3. Span
- 4. Linear independence
- 5. Basis for a vector space
- 6. Dimension of a vector space