Inverses of 2×2 matrices

Let us look at the 2×2 case. What does it mean for $A' := \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ to be the inverse of $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$? We can just write this out brutally:

$$I_2 = AA' = A'A$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

1 = aa' + bc'	1 = a'a + b'c
0 = ab' + bd'	0 = a'b + b'd
0 = ca' + dc'	0 = c'a + d'c
1 = cb' + dd'	1 = c'b + d'd

Note how different the sets of equations on the left and the right look. If we regard the matrix A as given, then we have four unknowns a', b', c', d', with eight equations. Quite a mess!

[–] Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

If we write this out as a system of linear equations, we get (putting the equations on the right at the bottom):

$$\begin{pmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \\ a & c & 0 & 0 \\ b & d & 0 & 0 \\ 0 & 0 & a & c \\ 0 & 0 & b & d \end{pmatrix} \begin{pmatrix} a' \\ b' \\ c' \\ d' \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

It turns out that the above equations aren't independent: the ones on the right (now the bottom) are a consequence of the ones on the left. The analogous statement is true for $n \times n$ matrices, but we won't prove this until later.

In the 2×2 case we can see it using the following trick, which is worth memorizing.

Theorem 1. Let $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a 2×2 matrix. Then A is invertible if and only if $ad - bc \neq 0$, and if this is the case,

$$A^{-1} = (ad - bc)^{-1} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Proof: Let $\tilde{A} := \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. We just make the following computation:

$$A\tilde{A} = \tilde{A}A = (ad - bc)I_n$$
, i.e:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = (ad - bc) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (ad - bc) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Now if $ad - bc \neq 0$, it is clear that $(ad - bc)^{-1}\tilde{A}$ satisfies the definition of A^{-1} . For the converse,

[–] Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –

suppose that A is invertible. In fact, just assume there is a matrix A' such that A'A = I. Then so $A'(A\tilde{A}) =$ $A'(ad - bc)I_n = (ad - bc)A'$. Using the associativity, we find this is also equal to $(A'A)\tilde{A} = I_2\tilde{A} = \tilde{A}$. We conclude from this that $(ad - bc)A' = \tilde{A}$. If ad - bc were zero, this would imply that $\tilde{A} = 0$, hence a = b = c = d = 0, which obviously can't be true if A'exists. This shows that if A'A = I, then $ad - bc \neq 0$, and hence by the previous calculation, A is invertible.

See if you can fill in the proof of the following result.

Theorem 2. Let $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a 2×2 matrix. Then the following are equivalent.

- 1. $ad bc \neq 0$.
- 2. A is invertible.
- 3. There exists an A' such that $A'A = I_2$.
- 4. There exists an A' such that $AA' = I_2$.

[–] Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –