Systems of linear differential equations

Notation: $I := (a, b) := \{t \in \mathbf{R} : a < t < b\}.$ $C_2^k := \{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} : x_1, x_2 \in C^k(I) \}.$

Theorem: Let $P:=\begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}$ be a 2×2 matrix of continuous functions on I. If $X:=\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is a vector of differentiable functions on I. let L(X):=X'-PX.

- 1. L is a linear transformation.
- 2. Given any $Q\in C_2^0(I)$, any $t_0\in I$, and any vector $Y_0:=\begin{pmatrix}y_1\\y_2\end{pmatrix}\in \mathbf{R}^2$, there exists a unique X such that

(a)
$$L(X) = Q$$
, i.e, $X' = PX + Q$

(b)
$$X(t_0) = Y_0$$
.

Corollary: $L: C_2^1(I) \to C_2^0(I)$ is surjective, and its nullspace has dimension 2.

Corollary: If (X_1, X_2) is a linearly independent pair of elements in NS(L), then (X_1, X_2) forms a basis for NS(L).

Corollary: Let (X_1, X_2) be a pair of elements of NS(L), and let $W(X_1, X_2)$ be the determinant of the matrix whose columns are X_1, X_2 . If $W(X_1, X_2)(t_0) \neq 0$ for any $t_0 \in I$, then (X_1, X_2) is a basis for NS(L) and $W(X_1, X_2)(t) \neq 0$ for all $t \in I$.

Theorem: If (X_1, X_2) is a pair of elements of NS(L) and $W := W(X_1, X_2)$, then $W' = \operatorname{tr}(P)W$. Hence $W = ce^{\alpha}$, where c is some constant and $\alpha' = \operatorname{tr}(P)$.

Constant coefficients

If the coefficients of P are constant and Z=0, a fundamental solution set can be found easily. One method is to try exponential solutions of the form e^{rt} .

Claim: Suppose P is constant and ξ_0 is an eigenvector of P with eigenvalue λ . Then $X := e^{\lambda t} \xi_0$ satisfies X' = PX.

Thus if P is diagonalizable and ξ_1, ξ_2 is a basis of eigenvectors with corresponding eigenvalues λ_1, λ_2 , then $(e^{\lambda_1 t} \xi_1, e^{\lambda_2 t} \xi_2)$ is a fundamental solution set. The general solution to the differential equation is then

$$X(t) = c_1 e^{\lambda_1 t} \xi_1 + c_2 e^{\lambda_2 t} \xi_2.$$