
Diagonalization of Symmetric Matrices

Theorem: Let A be an n×n matrix with real entries.
Then the following conditions are equivalent.

1.(a) A is symmetric: AT = A.
(b) For any X, Y ∈ Rn, (AX|Y ) = (X|AY ).
(c) The matrix of TA with respect to every

orthonormal basis is symmetric.

2. There exists an orthogonal basis of Rn consisting
of eigenvectors of A.

3. There exist an invertible matrix S such that S−1 =
ST and a (real) diagonal matrix D such that A =
SDS−1.



Hermitian inner product

If B ∈ Mmn(C), B∗ := B
T ∈ Mnm.

If X, Y,∈ Cn, (X|Y ) :=
∑

XiY i = Y ∗X = X∗Y .
This is similar to the formula for the inner product in
the real case, except for the complex conjugate. This
is necessary for the positivity condition.

Properties of the inner product

1. (X + X ′|Y ) = (X|Y ) + (X ′|Y ) and
(X|Y + Y ′) = (X|Y ) + (X|Y ′).

2. (λX|Y ) = λ(X|Y ) + (X|λY ).

3. (X|Y ) = (Y |X).

4. (X|X) > 0 if X 6= 0.

Formula: If X ∈ Cn, Y ∈ Cm, (BX|Y ) = (X|B∗Y ).
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The following result reduces to the theorem above
when the entries of A are real.

Variant: Let A be an n × n matrix with complex
entries. Then the following conditions are equivalent.

1.(a) A is Hermitian: A∗ = A.
(b) For any X, Y ∈ C, (AX|Y ) = (X|AY )
(c) The matrix of TA with respect to every

orthonormal basis for Cn is hermitian.

2. There exists an orthogonal basis of Cn consisting of
eigenvectors of A, and the eigenvalue of A are real.

3. There exist an invertible matrix S such that S−1 =
S∗ and a real diagonal matrix D such that A =
SDS−1.
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Proofs

First we prove the “formula.”

(X|B∗Y ) := (B∗Y )∗X = (Y ∗B∗∗)X =

(Y ∗B)X = Y ∗(BX) = (BX|Y )

From now on, let A be an n × n matrix with
complex entries. Let us prove the equivalence of
the three conditions in (1). If (a) holds, then
(AX|Y ) = (X|A∗Y ) = (X|AY ), so (b) holds. If
B := v1, · · ·vn is any basis for Cn, then the matrix
for TA with respect to B is the matrix A′

ij such that
Avj =

∑
A′

ijvi. If B is orthonormal and (b) holds,
then

A′
ij = (Avj|vi) = (vj|Avi) = (vi|Avj) = A

′
ji.

This says that A′ = A′∗. Evidently (c) is a special case
of (a).

– Typeset by FoilTEX – 4



Now let’s prove that (2) implies (3). Let B :=
(v1, . . .vn) be an othogonal basis of Cn consisting
of eigenvectors of A. For each i, we may replace vi by
vi/||vi||, so that now B is an orthonormal basis. Since
vi is still an eigenvector of A, Avi = λivi for some λi,
which by hypothesis is in fact real. Let S be the matrix
whose jth column is vj. We claim that S−1 = S∗, or
equivalently, that S∗S = I. But the ijth entry of S∗S
is

Ri(S∗)Cj(S) = Ci(S)TCj(S) = Ci(S)∗Cj(S) = (vi|vj) = δij.

It follows that S has the desired proporties.

The fact that (3) implies (1) can be deduced from the
equivalences of the three parts of (1), but let’s prove
it directly. If A = SDS−1 where S−1 = S∗ and D is
diagonal and real, then D = D∗, and so

A∗ = (SDS∗)∗ = S∗∗D∗S∗ = SDS∗ = A.

– Typeset by FoilTEX – 5



The proof that (1) implies (2) is more difficult.

Lemma: If A is Hermitian, then all the eigenvalues of
A are real.

Proof: If λ is an eigenvalues of A, then there is a
nonzero v such that Av = λv. Hence

λ(v|v) = (λv|v) = (Av|v) = (v|Av) = (v|λv) = λ(v|v).

Since (v|v) 6= 0, it follows that λ = λ, so λ is real.

Although the following result is really a consequence
of the theorem, it is worth proving seperately.

Lemma: If A is Hermitian and v and v′ are
eigenvectors of A corresponding to distinct eigenvalues,
then v and v′ are orthogonal.

Proof: Say Av = λv and Av′ = λ′v′. Recall that λ
and λ′ are real. Then

λ(v|v′) = (λv|v′) = (Av|v′) = (v|Av′) = (v|λ′v′) = λ′(v|v′).
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Thus (λ − λ′)(v|v′) = 0. If λ 6= λ′, this implies that
(v|v′) = 0.

Lemma: If A is Hermitian and v is an eigenvector of
A, let W := v⊥. Then if w ∈ W , Aw ∈ W .

Proof: If w ∈ W , then

(Aw|v) = (w|Av) = (w|λv) = λ(w|v) = 0.

Hence Aw ⊥ v, that is Aw ∈ w.

Now we prove that (1) implies (2) by induction on n.
If n = 1 there is nothing to prove. Say n > 1. Let
λ be a root of pA(X). Then there exists a v such
that Av = λv and ||v|| = 1. Let W := v⊥. This
is a vector space of dimension n − 1. We can choose
an orthonormal basis B := (v1, . . .vn) for Cn with
v1 = v. Then (v2, . . .vn) is an orthnormal basis for
W . By (1c), the matrix A′ for TA with respect to B
is still Hermitian. Since v1 is an eigenvector for A,
A′

i1 = 0 if j 6= 1. By (2), A′
1j = 0 if j 6= 1. The

induction hypothesis says that W has an orthogonal
basis consisting of eigenvectors of the remaining part
of the matrix, and this concludes the proof.
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