Second order linear differential equations

Notation: $I := (a, b) := \{t \in \mathbf{R} : a < t < b\}$. $C^k(I) := \{f: I \rightarrow \mathbf{R} : f, f' \cdots f^{(k)} \text{ exist and are continuous }\}$.

Theorem: Given $p,q \in C^0(I)$ and $f \in C^2(I)$, let L(f) := f'' + pf' + qf.

- 1. L is a linear transformation: $C^2(I) \rightarrow C^0(I)$.
- 2. Given any $g \in C^0(I)$, $t_0 \in I$, $y_0, y_1 \in \mathbf{R}$, there exists a unique $f \in C^2(I)$ such that

(a)
$$L(f) = g$$

(b) $f(t_0) = y_0$ and $f'(t_0) = y_1$.

Corollary: L is surjective, and its nullspace has dimension 2.

Corollary: If (f_1, f_2) is a linearly independent pair of elements in NS(L), then (f_1, f_2) forms a basis for NS(L).

Corollary: Let (f_1, f_2) be a pair of elements of NS(L), and let $W(f_1, f_2) := f_1f'_2 - f_2f'_1$. Then if $W(f_1, f_2)(t_0) \neq 0$ for any $t_0 \in I$, then (f_1, f_2) is a basis for NS(L) and $W(f_1, f_2)(t) \neq 0$ for all $t \in I$.

Theorem: If (f_1, f_2) is a pair of elements of NS(L)and $W := W(f_1, f_2)$, then W' + pW = 0. Hence $W = ce^{-P}$, where c is some constant and P' = p.

Constant coefficients

If p and q are constant and g = 0, a fundamental solution set to the equation can be found easily. Thus we fix constants b and c and consider the equation

$$f'' + bf' + cf = 0.$$

One method is to try exponential solutions of the form e^{rt} .

Claim: Suppose $r^2 + br + c = 0$. Then e^{rt} is a solution of f'' + bf' + cf = 0.

If the equation $x^2 + bx + c = 0$, has distinct roots r_1 and r_2 , one gets a fundamental solution set (e^{r_1t}, e^{r_2t}) . If these are complex, one can use Euler's formula $e^{x+iy} = e^x(\cos y + i \sin y)$. If there is only one root r, then (e^{rt}, te^{rt}) is a fundamental solution set.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –