Orthogonal projection

Theorem: Let V be an inner product space, let v be a vector in V, and let W be a finite dimensional linear subspace of V. Then there is a unique vector $w := \pi_W(v) \in W$ such that $v - w \in W^{\perp}$. Furthermore:

- $\pi_W(v)$ is the vector in W which is closest to \mathbf{v} .
- The map $\pi_W:V\to W$ is a linear transformation.

Let
$$\pi_W^{\perp}(\mathbf{v}) := v - \pi_W(\mathbf{v})$$
. Then

$$\mathbf{v} = \pi_W(\mathbf{v}) + \pi_W^{\perp}(\mathbf{v}),$$

and $\pi_W(\mathbf{v}) \in W$ and $\pi_W^{\perp}(\mathbf{v}) \in W^{\perp}$.

The map $\pi_W^{\perp} \colon V \to W^{\perp}$ is also a linear transformation.

Formulas

If $A \in M_{mn}$, $X \in M_{n1}$, and $Y \in M_{m1}$,

$$(A^TY|X) = (Y|AX).$$

Let $A \in M_{mn}$ and $Y \in M_{n1}$. Then $Y \in CS(A)$ if and only if the equation Y = AX is has a solution.

Theorem: For any Y, there is an \overline{X} such that $A^TY=A^TA\overline{X}$. For any such \overline{X} , $\overline{Y}:=A\overline{X}$ is the orthogonal projection of Y onto CS(A).

Lemma:

- 1. $NS(A^TA) = NS(A)$.
- 2. $rank(A^TA) = rank(A) = rank(A^T)$.
- 3. $CS(A^TA) = CS(A^T)$.

Proof: If $X \in NS(A)$, AX = 0, hence $A^TAX = 0$, hence $X \in NS(A^TA)$. If $X \in NS(A^TA)$, then $(AX|AX) = (A^TAX|X) = (0X|X) = 0$, hence AX = 0. Thus $X \in NS(A)$. This proves (1). Since A^TA and A both have n columns, their rank is n minus the dimension of their null spaces. Hence they have the same rank. The rank of A is the dimension of its column space, which is the same as the dimension of its row space, which is the rank of A^T . This proves (2). If $Z \in CS(A^TA)$, then there exists an X such that $Z = (A^TA)(X)$. But then $Z = A^T(AX) \in CS(A^T)$. Hence $CS(A^TA) \subseteq CS(A)$. Since the spaces have the same dimension, they must be equal.

Proof of theorem: Suppose $Y \in M_{m1}$. Then $A^TY \in CS(A^T) = CS(A^TA)$. Hence there exists \overline{X} with $A^TA\overline{X} = A^TA$. Let $\overline{Y} := A\overline{X}$. Then $A^T\overline{Y} = A^TY$. Hence for any X,

$$(Y|AX) = (A^TY|X) = (A^T\overline{Y}|X) = (\overline{Y}|AX).$$

This implies that $(Y-\overline{Y}|AX)=0$ for any X, so $Y-\overline{Y}\in (CS(A))^{\perp}.$