Matrix Inversion, Elementary matrices

Definition 1. Let A be an $n \times n$ matrix. Then A is invertible if there exists a matrix A^{-1} such that $AA^{-1} = I_n$ and $A^{-1}A = I_n$.

If A^{-1} exists, it is unique; this follows from the associative property of matrix multiplication.

Example: elementary matrices are invertible.

Definition 2. An elementary matrix is a matrix obtained by applying an elementary row operation to the identity matrix.

The following result is an easy computation but very much worth remembering.

Formula 3. Let R denote an ERO (elementary row operation) and let $E := (RI_m)$ denote the corresponding $m \times m$ elementary matrix. Then for any $A \in M_{mn}$,

$$EA = R(A).$$

That is, the matrix product EA is obtained by applying the row operation R to A.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Since any ERO R can be reversed by an ERO R' of the same type, it follows that the inverse of an elementary matrix E is an elementary matrix E' of the same type.

Theorem 4. Let A be an $n \times n$ matrix. Then the following are equivalent.

- 1. A is invertible
- 2. A is nonsingular: AX = 0 implies X = 0.
- 3. A is row equivalent to I_n .
- *4. A* can be written as a product of elementary matrices.

The key steps in the proof are (2) implies (3) and (3) implies (4), which give a fairly efficient procedure for computing A^{-1} when it exists.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Corollary 5. Suppose $A \in M_{n \times n}$ and there exists $A' \in M_{n \times n}$ such that $A'A = I_n$. Then A is invertible and $A' = A^{-1}$.

Proof: Suppose AX = 0. Then

$$X = I_n X = (A'A)X = A'(AX) = A'0 = 0.$$

This shows that A is nonsingular, hence by the theorem it is invertible. Let A^{-1} be its inverse.

$$A' = A'I_n = A'(AA^{-1}) = (A'A)A^{-1} = I_nA^{-1} = A^{-1}$$

Computing matrix inverses

Suppose A is invertible and $R_1, \dots R_n$ is a sequence of ERO's which puts A into reduced row echelon form. Then if E_i is the elemenatory matrix corresponding to R_i ,

$$E_n E_{n-1} \cdots E_1 A = I_n$$
, hence
 $A^{-1} = E_n E_{n-1} \cdots E_1 = R_n R_{n-1} \cdots R_1 I_n$.

An easy way to do this computationally is to apply the row operations simulataneously to A and to I_n . Equivalently, put I_n to the right of A to make an $n \times 2n$ matrix and row reduce that.

Example:
$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ -2 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & 1 & -1 \\ -4 & 3 & -2 \\ 2 & -1 & 1 \end{pmatrix}$$