Inner products

An inner product space is a vector space with a notion of magnitude and othogonality. Precisely:

Definition: Let V be a vector space. An *inner* product on V is an operation which assigns to any pair (\mathbf{v}, \mathbf{w}) of elements of V a number $(\mathbf{v}|\mathbf{w}) \in \mathbf{R}$ such that:

1. $(\mathbf{v}|\mathbf{w}) = (\mathbf{w}|\mathbf{v})$ for $\mathbf{v}, \mathbf{w} \in V$.

2.
$$(\mathbf{v} + \mathbf{v}' | \mathbf{w}) = (\mathbf{v} | \mathbf{w}) + (\mathbf{v}' | \mathbf{w})$$
, for $\mathbf{v}, \mathbf{v}', \mathbf{w} \in V$

- 3. $(a\mathbf{v}|\mathbf{w}) = a(\mathbf{v}|\mathbf{w}) = (\mathbf{v}|a\mathbf{w})$ for $a \in \mathbf{R}, \mathbf{v}, \mathbf{w} \in V$.
- 4. $(\mathbf{v}|\mathbf{v}) > 0$ for $\mathbf{v} \in V$ and $\mathbf{v} \neq 0$.

If $\mathbf{v} \in V$, the *magnitude* (or *norm* or *length*) of \mathbf{v} is by definition

$$||\mathbf{v}|| := \sqrt{(\mathbf{v}|\mathbf{v})}.$$

Two vectors $\mathbf{v}, \mathbf{w} \in W$ are said to be *orthogonal* if $(\mathbf{v}|\mathbf{w}) = 0$.

If S is a subset of V,

$$S^{\perp} := \{ v \in V : (v|s) = 0 \text{ for all } s \in S \},\$$

and is a linear subspace of V.

Fundamental formulas

Let \mathbf{v} and \mathbf{w} be vectors in an inner product space V.

- 1. If $\mathbf{v} \perp \mathbf{w}$, $||\mathbf{v} + \mathbf{w}||^2 = ||\mathbf{v}||^2 + ||\mathbf{w}||^2$. (Pythagorean theorem)
- 2. $||\mathbf{v} + \mathbf{w}||^2 = ||\mathbf{v}||^2 + ||\mathbf{w}||^2 + 2(\mathbf{v}|\mathbf{w}).$ (Law of cosines).
- 3. $|(\mathbf{v}|\mathbf{w})| \le ||\mathbf{v}|| ||\mathbf{w}||$. (Cauchy-Schwartz inequality.)
- 4. $||\mathbf{v} + \mathbf{w}|| \le ||\mathbf{v}|| + ||\mathbf{w}||.$ (Triangle inequality.)