Orthogonal projection

Theorem: Let V be an inner product space, let \mathbf{v} be a vector in V, and let W be a finite dimensional linear subspace of V. Then there is a unique vector $\mathbf{w} := \pi_W(\mathbf{v}) \in W$ such that $\mathbf{v} - \mathbf{w} \in W^{\perp}$. Furthermore:

- $\pi_W(\mathbf{v})$ is the vector in W which is closest to \mathbf{v} .
- Let $\pi_W^{\perp}(\mathbf{v}) := \mathbf{v} \pi_W(\mathbf{v})$. Then

$$\mathbf{v} = \pi_W(\mathbf{v}) + \pi_W^{\perp}(\mathbf{v}),$$

and $\pi_W(\mathbf{v}) \in W$ and $\pi_W^{\perp}(\mathbf{v}) \in W^{\perp}$.

The maps

$$\pi_W: V \to W \quad \text{and} \quad \pi_W^{\perp}: V \to W^{\perp}$$

are linear transformations.

Orthogonality

Definition: A sequence of vectors $(\mathbf{w}_1, \dots \mathbf{w}_m)$ in an inner product space V is orthogonal if $(\mathbf{w}_i|\mathbf{w}_j)=0$ whenever $i \neq j$.

Theorem: Let $S := (\mathbf{w}_1, \dots \mathbf{w}_m)$ be an orthogonal sequence of nonzero vectors in V.

- The sequence S is automatically linearly independent, hence is an ordered basis for $W := \operatorname{span} S$.
- \bullet If \mathbf{v} in V, then

$$\pi_W(\mathbf{v}) = a_1 \mathbf{w}_1 + a_2 \mathbf{w}_2 + \cdots + a_m \mathbf{w}_m, \quad \text{where}$$

$$a_i := \frac{(\mathbf{v}|\mathbf{w}_i)}{(\mathbf{w}_i|\mathbf{w}_i)}$$

Gram-Schmidt

Algorithm: Let V be an inner product space, let $(\mathbf{v}_1, \dots \mathbf{v}_m)$ be a linearly independent sequence of vectors in V, and let $W_i := \mathrm{span}(\mathbf{v}_1, \dots \mathbf{v}_i)$ for i with $1 \le i \le m$. Then there is an *orthogonal* sequence $(\mathbf{w}_1, \dots \mathbf{w}_m)$ such that for each i, $(\mathbf{w}_1, \dots \mathbf{w}_i)$ is an orthogonal basis for W_i .

This is computed step by step, starting by taking $\mathbf{w}_1 := \mathbf{v}_1$. Now assume that $(\mathbf{w}_1, \dots \mathbf{w}_i)$ is already computed. Then we can compute π_{W_i} and $\pi_{W_i}^{\perp}$. Hence we can compute

$$\mathbf{w}_{i+1} := \pi_{W_i}^{\perp}(\mathbf{v}_{i+1}) = \mathbf{v}_{i+1} - (a_1 \mathbf{w}_1 + a_2 \mathbf{w}_2 + \cdots + a_i \mathbf{w}_i),$$

where
$$a_i := \frac{(\mathbf{v}|\mathbf{w}_i)}{(\mathbf{w}_i|\mathbf{w}_i)}$$
.

It is easy to check that this works.