Gauss Elimination

Row Echelon Form

Let A be an $m \times n$ matrix. Then A has m rows, which we denote by $R_1, R_2, \dots R_m$. We say that a row R_i is **zero** if each of its entries is zero, otherwise we say that it is **nonzero**. Let R_i be a nonzero row of A, say $R_i = (a_{i1}, a_{i2}, \dots a_{in})$. The **pivot**, or **leading entry**, of R_i is its first nonzero entry, starting from the left. More important than its value is the column in which it occurs:

Definition: Let R_i be a nonzero row of a matrix A. Then ℓ_i , the leading index of R_i , is the smallest j such that $a_{ij} \neq 0$:

$$R_i = (0 \ 0 \cdots a_{i,\ell_i} a_{i,\ell_{i+1}} \cdots a_{in})$$

Definition: Let A be an $m \times n$ matrix. Then A is in row echelon form if

- 1. All the nonzero rows are at the top. Thus, for some integer m', with $0 \le m' \le m$, the rows $R_1, \cdots R_{m'}$ are nonzero, but the rows $R_{m'+1}, \cdots R_m$ are zero.
- 2. The leading indices of the nonzero rows are increasing:

$$\ell_1 < \ell_2 < \cdots \ell_{m'}.$$

Theorem: Let A be the $m \times n + 1$ augmented matrix corresponding to a system of m linear equations in n unknowns. Assume A is in row echelon form. Then the solution set SS(A) can be determined as follows.

- 1. If the pivot of the last nonzero row $R_{m'}$ is in the last column, that is if $\ell_{m'} = n + 1$, then the equations are inconsistent, and the solution set is empty.
- 2. Suppose that $\ell_{m'} \neq 0$. Then SS(A) is not empty, and can be computed by back substitution. Explicitly, m' of the variables, namely the variables $x_{\ell_1} \cdots x_{\ell_{m'}}$ corresponding to the leading indices, are "dependent variables" and can be solved for in terms of the remaining n m'

"independent variables," starting at the bottom and working up. For example the last nonzero row $R_{m'}$ gives an equation for the dependent variable $x_{\ell_{m'}}$ in terms of the remaining independent variables x_j with $j > \ell_{m'}$ (if any). Working from the bottom up, one then uses each nonzero row R_i to find the dependent variable x_{ℓ_i} in terms of the variables x_j with $j > \ell_i$. Note that such an x_j is either free (if j is not a leading index), or is already computed (if j is a leading index of some row).

Elementary Row Operations

Let A be an $m \times n$ matrix, with rows $R_1, \dots R_m$. There are three types of elementary row operations.

- 1. $E_{ij}(\lambda)$: Given two distinct integers *i* and *j* and a number λ , add λ times R_j to R_i .
- 2. E_{ij} : Given two integers *i* and *j*, interchange rows R_i and R_j .
- 3. $E_i(\lambda)$: Given an integer *i* and a nonzero number λ , multiply R_i by λ .

Theorem:

- 1. If a matrix A' can be obtained from a matrix A by a sequence of elementary row operations, then the solution sets of the systems of equations corresponding to A and A' are the same.
- 2. If A is any matrix, then there is a sequence of elementary row operations which, when applied to A, yields a matrix in row echelon form.