Eigenvectors and eigenvalues

Definition: Let A be a matrix and let $\lambda \in \mathbf{R}$.

 $E_{\lambda} := \{X : AX = \lambda X\}$ is a linear subspace of M_{n1} , called the λ -eigenspace of A.

Elements of E_{λ} are called the λ -eigenvectors of A.

A number λ is said to be an *eigenvalue* of A if there is some nonzero λ -eigenvector of A.

Theorem: $E_{\lambda} = NS(A - \lambda I) = NS(\lambda I - A)$. Hence the following are equivalent:

- λ is an eigenvalue of A.
- $NS(\lambda I A) \neq \{\mathbf{0}\}.$
- $\lambda I A$ is singular.
- $\det(\lambda I A) = 0.$