
Classification of phase trajectories of ODE’s

Let us consider the trajectories of the vector-valued functions X such that

X ′ = AX, where A :=
(

a b
c d

)
is a 2 × 2 matrix. Of course, the constant

trajectory X(t) = 0 for all t is one such solution. How the others look depend
on the matrix A, and in particular on its eigenvalues. The characteristic
polynomial of A is

pA(λ) = λ2 − (a + d)λ + (ad− bc),

so the eigenvalues of A are given by

λ =
a + d±

√
(a− d)2 + 4bc

2

Here are the main cases:

Saddle point: This is the case in which the eigenvalues are real and have
opposite sign, which is true if and only if det A > 0 and (a− d)2 + 4bc > 0.
In this case the trajectories are asymptotic to the positive eigenspace as t
approaches infinity, and to the negative eigenspace as t approaches negative
infinity.

Node: This is the case in which the eigenvalues are nonzero, real and
distinct and have the same sign, which is ture if and only if det A < 0 and
(a−d)2 +4bc > 0. If the eigenvalues are positive, the trajectories move away
from the origin with increasing time, and the node is said to be “unstable.”
If the eigenvalues are negative, the the trajectories approach the origin as t
approaches infinity, and the node is said to be “stable.” In either case, the
trajectories are tangent to the eigenspace corresponding to the eigenvalue
with smaller absolute value as they approach the origin.

Degenerate Node (A diagonalizable) There are various special cases
called “degenerate nodes.” For example, if the eigenvalues are equal and not
zero and the matrix is diagonal, the trajectories are rays emanating from the
origin. If one of the eigenvalues is zero, the trajectories are rays parallel to the
nonzero eigenspace, but also each point on the zero eigenspace is a trajectory
corresponding to a constant equilibrium solution. If both eigenvalues are zero
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and the matrix is diagonalizable, it is the zero matrix, and every trajectory
is constant.

Spiral point: This is the case arising from complex eigenvalues. Thus
(a − d)2 + 4bc is negative, and so b and c have opposite signs. There are
several possibilities:

• If (a + d) > 0, the trajectories spiral out with increasing time. If
(a + d) < 0, they spiral in with increasing time. If a + d = 0, they are
periodic, and form ellipses.

• If c > 0 and b < 0, the trajectories move counterclockwise with time.
If c < 0 and b > 0, they move clockwise with time. This is easy to
remember if you draw the relevant part of the vector field: for example,

the vector
(

a
c

)
, placed with its origin at ( 1, 0 ), will point you in the

right direction.

Improper node This corresponds to nondiagonalizable matrices, and
is an interesting transitional case. In this case there is a single eigenvalue
λ and a one dimensional eigenspace, that is, a line L. If λ is positive, the
trajectories move away from the origin as time increases and are unbounded.
The slope of the trajectory approaches the slope of the line L (but is not
asymptotic to it, contrary to what it says in the book). As time approaches
negative infinity, the trajectory approaches the origin and becomes tangent
to the line L. The trajectories make a semiloop, as you can see from the
graph (except of course for the trajectory which lies on the line L.)

For example, suppose A =
(

λ 1
0 λ

)
, with λ > 0. Then L is the x-axis.

Let N :=
(

0 1
0 0

)
. The fundamental solutions are given by the columns of

the matrix

etA = eλtetN =
(

eλt teλt

0 eλt

)
.

Thus, the solutions are given by X = etA

(
c1

c2

)
, i.e.:

x1 = c1e
λt + c2te

λt

x2 = c2e
λt
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Then

x′
1 = c1λeλt + c2λteλt + c2e

λt

x′
2 = c2λeλt

Note that x1 and x2 are unbounded as t approaches infinity. The slope of

the trajectory is given by the slope of the vector
(

x′
1

x′
2

)
, i.e., by

x′
2/x

′
1 =

c2

(c1 + c2t + λ−1c2)

As t approaches plus or minus infinity, this tends to zero. In other words,
the trajectory is tangent to the x-axis as it comes in toward the origin, and
gradually becomes parallel to the x-axis as t approaches infinity. Note that if
c2 6= 0, the slope changes its sign at some point. Thus x2 is always increasing,
but x1 changes from decreasing to increasing at some t. This explains the
semiloop.
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