Initial Value problem

Recall that the existence and uniqueness theorem says
the following:

Theorem 1: Let p, g and be real numbers. Let
W=A{y:y" +py +qy = 0}.

1. W is a linear subspace of the space of all functions,
and has dimension 2.

2. For any ty, the map
W — RZ? - Y (y(to))

Is an isomorphism. That is, it is linear, and its
matrix representative with respect to any basis is
invertible.



Boundary value problems

Now choose tg,t; with t1 > ty5, and consider the
boundary value mapping

B:W —R2:y (y(t°)>

This is again a linear transformation, but it not always
an isomorphism.

Theorem 2: In the above situation, let 6§ := \/4q — p?
and let ¢ := t; —ty. Then there are two possible cases:

1. B has rank two, and so is an isomorphism. This
happens whenever p? > 4q or whenever 4q > p?
and ¢ # nm /6 for some integer n. In either of these
cases, given any %o, ¥y1, there is a unique solution

2. B has rank one. This happens when 4¢ > p? and ¢
is an integer n times 7/60. In this case, the set of
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(yo,y1) in R? for which a solution exists is a one-
dimensional linear subspace of R?, and the set of all

y such that y(tg) = 0 = y(¢1) is a one-dimensional
linear subspace of W, with basis sin(6t) = sin(";"t).

See the text for a discussion of the boundary value
problem given by taking the derivatives of y at ¢y and

t1 in place of its values.
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Periodic boundary value problem

Here is another boundary value problem we can
consider. Let I denote the interval (tg,%1), and for

ye W let
( y(t1) —y(to)
Aily) = <y’<t1> - y’<t0>>

and let Pr:={y € W :y(to) = y(t1),y'(to) = v'(t1)}
be the nullsapce of Aj.

Theorem 3: In the above situation, either:

1. g#0,p=0, and £ = Q"T;T for some integer n. In

this case Aj is zero, and (cos(22™t), sin(22%¢)) is a
basis for Py

2. ¢ = 0 and p # 0. In this case, A; has rank one,
and the constant solution 1 is a basis for P.

3. In all other cases, A is an isomorphism and P; =

10}
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Proof of Theorem 2

Recall that the roots of characteristic equation are
given by

(5) A= PE VP? —4q
2

For simplicity we assume that ¢y, = 0. First suppose
that p? # 4q. In this case, the roots A\; and Ay of
(%) are distinct, and (e*1?, e*2?) is a basis for W. The

. : : .. 1 1
matrix for B with respect to this basis is <6>\1g €>\2g)

and its determinant is e*2¢ — e**. This is zero if and
only if e*2=%A1 = 1. By (%), Ao — \; = 2i0, so we
see that B is an isomorphism unless €2 = 1. This is
true if and only if £6 is an integer multiple of .

There remains the possibility that 6 = 0. In this case a

fundamental solution set is (e, te*?), and the matrix

. 1 0\ . . .
for B is (e”‘ EGM) is always invertible.
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Proof of theorem 3

Again we first treat the case in which the roots A; and
Ao are distinct, so (eM?, e*?t) is a basis for W. The
determinant of the matrix for A is then

eMt — 1 et — 1
)\1(€>\1£ — 1) )\Q(GAQE — 1)

Since Ay # A1, this is zero if and only if A1 or A
satisfies e* = 1, so A = 2nmi for some integer n.

Suppose this is the case. If n > 0 then A\{ and Ay are
purely imaginary, so p = 0 and A; = £2,/q. Then the
matrix Ay is zero, so Py = W, which has real basis
(cos(22%),sin(227)). If n = 0, then one root is zero
and the other nonzero and real. In this case ¢ = 0 and
the matrix for A; has rank one. Hence the P; consists

just of the constant solutions.

If there is only one eigenvalue A, then a basis for W is
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(e, te*), and the computation is the following:

eM— 1 leM
)\(eM —1) MerM + eM — 1

(M 1)+ M 1) —eM(AeM —1) = (M —1)%

Since A\ is real and ¢ > 0, this cannot be zero unless
A =0.
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