Jordan Normal Form

- 1. Let $A := \begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}$. Find an invertible matrix S such that $A = SBS^{-1}$, where B is in Joran normal form. Use this to find A^5 .
- 2. Suppose that A, B and N are square matrices, and A = B + N, where BN = NB and $N^2 = 0$. Show that for any natural number n, $A^n = B^n + nB^{n-1}N$. Show that for any polynomial p, p(A) = p(B) + Np'(B), where p' is the derivative of p.
- 3. With the notation of the previous problem, suppose that B is invertible.
 - (a) Find a formula for A^{-1} in terms of B^{-1} .
 - (b) Find a formula for \sqrt{A} in terms of \sqrt{B} .
 - (c) Guess a formula for e^A in terms of e^B .
- 4. Use problem 3 to compute A^{-1} and \sqrt{A} if $A = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$. Use problem 2 to redo the last part of problem 1.