Solutions to Homework

Section 10.2

Problems 1-8: Determine whether the given function is periodic. If so, find the fundamental period.

1. $\sin 5x$.

In general if f(x) is periodic with fundamental period T then f(ax), a > 0 is periodic with fundamental period $\frac{T}{a}$. This is equivalent to saying $f(x) = f(x+T) \forall x$ if and only if $f(ax) = f(a(x+\frac{T}{a})) \forall x$, which is obvious.

 $\sin x$ is periodic with period $2\pi \Rightarrow \sin 5x$ is periodic with period $\frac{1}{5}2\pi = \frac{2\pi}{5}$.

2. $\cos 2\pi x$.

 $\cos x$ is periodic with period $2\pi \Rightarrow \cos 2\pi x$ is periodic with period $\frac{1}{2\pi}2\pi = 1$.

3. $\sinh 2x$.

Suppose $\sinh 2x$ is periodic with period T. If f(x) is differentiable and periodic with period T then its derivative is also periodic with the same period $[f'(x)] = \frac{\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}}{h} = \frac{f(x+T+h)-f(x+T)}{h} = f'(x+T)]$

So we get that then $\cosh 2x$ should also be periodic with period T. But then their difference $e^{2x} = \cosh 2x - \sinh 2x$ is also periodic with period T. This means $\forall xe^{2x} = e^{2x+2T} \Rightarrow e^{2T} = 1 \Rightarrow 2T = 0 \Rightarrow T = 0$ contradiction, since T is the period so must be positive. We have a contradiction, $\Rightarrow \sinh 2x$ is not periodic.

Problems 13-18: Graph the function and find its Fourier series.

14.
$$f(x) = \begin{cases} 1, & -L \le x < 0 \\ 0, & 0 \le x < L \end{cases}, f(x+2L) = f(x).$$

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx = \frac{1}{L} \int_{-L}^{0} 1 dx + \frac{1}{L} \int_{0}^{L} 0 dx = \frac{1}{L} (x|_{-L}^{0}) = 1$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx = \frac{1}{L} \int_{-L}^{0} 1 \cdot \cos \frac{n\pi x}{L} dx + \frac{1}{L} \int_{0}^{L} 0 \cdot \cos \frac{n\pi x}{L} dx = \frac{1}{L} \int_{-L}^{0} \cos \frac{n\pi x}{L} dx = \frac{1}{L} \int_{-L}^{0} \cos \frac{n\pi x}{L} dx = \frac{1}{L} \int_{-L}^{0} \sin \frac{n\pi x}{L}$$

The Fourier series of f is

$$\frac{1}{2} + \sum_{n=1}^{\infty} \frac{1}{n\pi} (\cos{(n\pi)} - 1) \sin{\frac{n\pi x}{L}} = \frac{1}{2} + \sum_{n=1, nodd}^{\infty} \frac{1}{n\pi} (-2) \sin{\frac{n\pi x}{L}} = \frac{1}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin{\frac{(2n-1)\pi x}{L}} = \frac{1}{2} + \frac{1$$

15.
$$f(x) = \begin{cases} x, & -\pi \le x < 0 \\ 0, & 0 \le x < \pi \end{cases}, f(x + 2\pi) = f(x).$$
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{0} x dx + \frac{1}{\pi} \int_{0}^{\pi} 0 dx = \frac{1}{\pi} (\frac{x^2}{2}|_{-\pi}^{0}) = -\frac{\pi}{2}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos \frac{n\pi x}{\pi} dx = \frac{1}{\pi} \int_{-\pi}^{0} x \cdot \cos nx dx + \frac{1}{\pi} \int_{0}^{\pi} 0 \cdot \cos nx dx = \frac{1}{\pi} \int_{-\pi}^{0} x \cos nx dx = \frac{1}{\pi} \int_{-\pi}^{0} x \cos nx dx = \frac{1}{\pi} \int_{-\pi}^{0} x d\left(\frac{\sin nx}{n}\right) = \frac{1}{\pi} x \left(\frac{\sin nx}{n}\right) |_{-\pi}^{0} - \frac{1}{\pi} \int_{-\pi}^{0} \frac{\sin nx}{n} dx = -\frac{1}{\pi} \int_{-\pi}^{0} \frac{\sin nx}{n} dx = \frac{1}{\pi} \frac{\cos nx}{n^2} |_{-\pi}^{0} = \frac{1}{\pi} \left(\frac{1}{n^2} (1 - \cos(n\pi))\right)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin \frac{n\pi x}{\pi} dx = \frac{1}{\pi} \int_{-\pi}^{0} x \cdot \sin nx dx + \frac{1}{\pi} \int_{0}^{\pi} 0 \cdot \sin nx dx = \frac{1}{\pi} \int_{-\pi}^{0} x \sin nx dx = -\frac{1}{\pi} \int_{-\pi}^{0} x d\left(\frac{\cos nx}{n}\right) = -\frac{1}{\pi} x \left(\frac{\cos nx}{n}\right) |_{-\pi}^{0} + \frac{1}{\pi} \int_{-\pi}^{0} \frac{\cos nx}{n} dx = -\frac{\cos(-n\pi)}{n} + \frac{1}{\pi} \frac{\sin nx}{n^2} |_{-\pi}^{0} = -\frac{\cos(n\pi)}{n} = \frac{(-1)^{n+1}}{n}$$

The Fourier series of f is

$$-\frac{\pi}{4} + \sum_{n=1}^{\infty} \left(\frac{1}{n^2 \pi} (1 - \cos(n\pi)) \cos(nx) + \frac{(-1)^{n+1}}{n} \sin(nx) \right) = -\frac{\pi}{4} + \sum_{n=1}^{\infty} \left(\frac{2 \cos((2n-1)x)}{(2n-1)^2 \pi} + \frac{(-1)^{n+1} \sin(nx)}{n} \right)$$

- 27. Suppose that g is an integrable periodic function with period T.
 - a) If $0 \le a \le T$, show that $\int_0^T g(x)dx = \int_a^{a+T} g(x)dx$ $I := \int_0^T g(x)dx = \int_0^a g(x)dx + \int_a^T g(x)dx$ Make a change of variable y = x + T for the first integral. Get $I = \int_T^{a+T} g(y-T)dy + \int_a^T g(x)dx = \int_T^{a+T} g(y)dy + \int_a^T g(x)dx$ Now change the variable y to x. $I = \int_T^{a+T} g(x)dx + \int_a^T g(x)dx = \int_a^{a+T} g(x)dx$
 - b) Shot that for any value of a, not necessarily in $0 \le a \le T$, $\int_0^T g(x)dx = \int_a^{a+T} g(x)dx$ Let a be any number. Then since T>0 there is an integer n such that $nT \le a < (n+1)T$ i.e. $0 \le a-nT < T$. Then part a) will give $I:=\int_0^T g(x)dx = \int_{(a-nT)}^{(a-nT)+T} g(x)dx$. Now make change of variable y=x+nT. Get $I=\int_a^{a+T} g(y-nT)dy = \int_a^{a+T} g(y)dy = \int_a^{a+T} g(x)dx$
 - c) Shot that for any values of a and b, $\int_a^{a+T} g(x) dx = \int_b^{b+T} g(x) dx$ We know that for any a, $\int_0^T g(x) dx = \int_a^{a+T} g(x) dx$ and for any b, $\int_0^T g(x) dx = \int_b^{b+T} g(x) dx$. These together give $\int_a^{a+T} g(x) dx = \int_b^{b+T} g(x) dx$.
- 29. a) Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be a set of mutually orthogonal vectors in three dimensions, and let \mathbf{u} be any three-dimensional vector. Show that $\mathbf{u} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3$, where $a_i = \frac{\mathbf{u}\cdot\mathbf{v}_i}{\mathbf{v}_i\cdot\mathbf{v}_i}$ (NOTE: even though it is not stated explicitly, but it is implied that $\mathbf{v}_i \neq 0$.

Let **w** be any vector in the given vector space. \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are orthogonal and nonzero \Rightarrow they are linearly independent. Since we are in a three dimensional vector space, these vectors form a basis $\Rightarrow \exists b_1, b_2, b_3 : w = b_1\mathbf{v}_1 + b_2\mathbf{v}_2 + b_3\mathbf{v}_3$. Now

$$A := (u - a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3, w) = (u, b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + b_3 \mathbf{v}_3) - (a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3, b_1 \mathbf{v}_1 + b_2 \mathbf{v}_2 + b_3 \mathbf{v}_3) = b_1(u, \mathbf{v}_1) + b_2(u, \mathbf{v}_2) + b_3(u, \mathbf{v}_3) - \sum_{i,j=1}^3 a_i b_j(\mathbf{v}_i, \mathbf{v}_j)$$

By orthogonality if $i \neq j$, $(\mathbf{v}_i, \mathbf{v}_j) = 0$ so

$$A = b_1(u, \mathbf{v}_1) + b_2(u, \mathbf{v}_2) + b_3(u, \mathbf{v}_3) - a_1b_1(\mathbf{v}_1, \mathbf{v}_1) - a_2b_2(\mathbf{v}_2, \mathbf{v}_2) - a_3b_3(\mathbf{v}_3, v_3)$$

But $(u, \mathbf{v}_i) = a_i(\mathbf{v}_i, \mathbf{v}_i)$, so A = 0.

So
$$(u - a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3, w) = 0 \forall w$$
. Take $w = u - a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3$. We get $||u - a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3|| = 0$, so $u - a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 = 0$.

b) Define the inner product (u, v) by

$$(u,v) = \int_{-L}^{L} u(x)v(x)dx.$$

Also, let

$$\phi_n(x) = \cos(n\pi x/L), n = 0, 1, 2, ...;$$

 $\psi_n(x) = \sin(n\pi x/L), n = 1, 2, ...;$

Show that Eq. (10)

$$\begin{split} & [\int_{-L}^{L} f(x) \cos(n\pi x/L) dx = a_0/2 \int_{-L}^{L} \cos(n\pi x/L) dx + \sum_{m=1} \infty a_m \int_{-L}^{L} \cos\frac{m\pi x}{L} \cos\frac{n\pi x}{L} dx \\ & + \sum_{m=1} \infty b_m \int_{-L}^{L} \sin\frac{m\pi x}{L} \cos\frac{n\pi x}{L} dx] \\ & \text{can be written in the form} \end{split}$$

$$(f, \phi_n) = a_0/2 + \sum_{m=1} \infty a_m(\phi_m, \phi_n) + \sum_{m=1} \infty b_m(\psi_m, \phi_n)$$
 (v).

Obvious.

c) Use Eq.(v) and the corresponding equation for (f, ψ_n) , together with the orthogonality relations, to show that $a_n = \frac{(f,\phi)n}{(\phi_n,\phi_n)}, n = 0,1,2,...; b_n = \frac{(f,\psi_n)}{(\psi_n,\psi_n)}$. Since all of ϕ_n, ψ_m are pairwise orthogonal, we get that in (v) the only non-zero term on the right is $a_n(\phi_n,\phi_n)$, so we have $(f,\phi_n) = a_n(\phi_n,\phi_n)$ i.e. $a_n = \frac{(f,\phi)n}{(\phi_n,\phi_n)}$. The equation for the b_n can be gotten in a similar way.