
Math 54 Spring 2005

Solutions to Homework Section 3.2
April 8th, 2005

1. Find the Wronskian of the functions e2t and e−3t/2.

Det
(

e2t e−3t/2

2e2t −3
2e−3t/2

)
=e2t(−3

2e−3t/2)− e−3t/2(2e2t) = −7
2et/2.

2. Find W (cos t, sin t)(t).∣∣∣∣ cos t sin t
− sin t cos t

∣∣∣∣ = cos2 t + sin2 t = 1.

3. Find W (e−2t, te−2t)(t).∣∣∣∣ e−2t te−2t

−2e−2t e−2t(−2t + 1)

∣∣∣∣ = e−4t(−2t + 1)−−2te−4t = e−4t.

4. Find W (x, xex)(x).∣∣∣∣ x xex

1 ex(x + 1)

∣∣∣∣ = xex(x + 1)− xex = x2ex.

5. Find W (et sin t, et cos t)(t).∣∣∣∣ et sin t et cos t
et(sin t + cos t) et(cos t− sin t)

∣∣∣∣ = e2t(sin t cos t− sin2 t)− e2t(sin t cos t + cos2 t) = −e2t.

6. Find W (cos2 θ, 1 + cos 2θ)(x).∣∣∣∣ cos2 θ 1 + cos 2θ
−2 cos θ sin θ −2 sin 2θ

∣∣∣∣ = −2 cos2 θ sin 2θ + 2(1 + cos 2θ) cos θ sin θ = −2 cos2 θ sin 2θ +

2(2 cos2 θ) cos θ sin θ = 2 cos2 θ(− sin 2θ + 2 cos θ sin θ) = 0.

In problems 7 through 12 determine the longest interval in which the given initial value problem
is certain to have a unique twice differentiable solution. Do not attempt to find the solution.

7. ty′′ + 3y = t, y(1) = 1, y′(1) = 2.

To apply theorem 3.2.1 we have to divide the ODE by t, obtaining y′′ + 3
t y = 1. Using the

notation of theorem 3.2.1 we have p(t) = 0, q(t) = 3
t , g(t) = 1. q(t) is not defined at zero. So

the largest interval containing 1 on which p, q and g are defined and continuous is (0,∞), and
theorem 3.2.1 ensures the existence and uniqueness on this interval of a solution satisfying the
initial conditions.

8. (t− 1)y′′ − 3ty′ + 4y = sin t, y(−2) = 2, y′(−2) = 1.

To apply theorem 3.2.1 we have to divide the ODE by t− 1, obtaining y′′− 3t
t−1y′ + 4

t−1y = sin t
t−1 .

Using the notation of theorem 3.2.1 we have p(t) = − 3t
t−1 , q(t) = 4

t−1 , g(t) = sin t
t−1 . p(t), q(t),
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and g(t) are not defined at 1. So the largest interval containing −2 on which p, q and g are
defined and continuous is (−∞, 1), and theorem 3.2.1 ensures the existence and uniqueness on
this interval of a solution satisfying the initial conditions.

18. If the Wronskian W of f and g is t2et and if f(t) = t, find g(t).

We have W=Det
(

t g(t)
1 g′(t)

)
=tg′ − g. On the other side we know that W = t2et, so g must

satisfy tg′−g = t2et. This implies g′−g/t = tet for t 6= 0 and g(0) = 0 (this is seen by evaluating
the equation at t = 0).
Now we have to solve this ODE, for example using the integrating factor e

R t
0 −1/xdx = e− ln t =

1/t. We multiply by the integrating factor to obtain g′/t − g/t2 = et, which yields (g/t)′ = et.
Integrating both sides with respect to t we obtain g/t = et + c for any constant c. We obtain
g = t(et + c) and note that it satisfies g(0) = 0, so it’s a solution for all t.

22. Find the fundamental set of solutions specified by Theorem 3.2.5 for y′′ + 4y′ + 3y = 0 with
initial point t0 = 1.

The associated characteristic equation to this differential equation is r2 + 4r + 3 = 0, which
has solutions r = −1,−3. Therefore, the general solution to the differential equation is y =
c1e

−t + c2e
−3t. Since we’ll soon need it, let’s note that its derivative is y′ = −c1e

−t − 3c2e
−3t.

For the set of solutions y1 and y2 specified by Theorem 3.2.5 (with t0 = 1), we first obtain y1

by letting y(1) = 1 and y′(1) = 0 in our general solution. This gives us the system of equations

c1e
−1 + c2e

−3 = 1
−c1e

−1 − 3c2e
−3 = 0

It follows that c1 = 3/2e and c2 = −e3/2, giving us the solution y1 = 3e
2 e−t− e3

2 e−3t. To obtain
y2, we let y(1) = 0 and y′(1) = 1 in our general solution. This gives us the system of equations

c1e
−1 + c2e

−3 = 0
−c1e

−1 − 3c2e
−3 = 1

It follows that c1 = e/2 and c2 = −e3/2, giving us y2 = e
2e−t − e3

2 e−3t. The y1 and y2 we have
just found make up the fundamental set of solutions specified by Theorem 3.2.5.

24. Verify that y1(t) = et and y2(t) = tet are solutions of y′′ − 2y′ + y = 0 for x ∈ R. Do they
constitute a fundamental set of solutions?

For y1 we have y1
′ = y1

′′ = et. Substituting this into the given differential equation gives us

et − 2et + et = 0.

For y2 we have y2
′ = et(t + 1) and y2

′′ = et(t + 2). Substituting this into the given differential
equation gives us

et(t + 2)− 2et(t + 1) + tet = 0.

So y1 and y2 are both solutions to the differential equation. To see that they constitute a
fundamental set of solutions, we examine their Wronskian:

W (et, tet) =

∣∣∣∣∣ y1 y2

y1
′ y2

′

∣∣∣∣∣ =

∣∣∣∣∣ et tet

et et(t + 1)

∣∣∣∣∣ = e2t(t + 1)− te2t = e2t
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Since e2t is non-zero for x ∈ R (the given interval), it follows by Theorem 3.2.4 that y1 and y2

form a fundamental set of solutions. Thus the general solution to the given differential equation
is y = c1e

t + c2te
t.

26. Verify that y1(t) = x and y2(t) = sin x are solutions of (1−x cot x)y′′−xy′+y = 0 for x ∈ (0, π).
Do they constitute a fundamental set of solutions?

For y1 we have y1
′ = 1 and y1

′′ = 0. Substituting this into the given differential equation gives
us

0− x + x = 0.

For y2 we have y2
′ = cos x and y2

′′ = − sin x. Substituting this into the given differential
equation gives us

(1− x cot x)(− sin x)− x cos x + sinx = 0.

So y1 and y2 are both solutions to the differential equation. To see that they constitute a
fundamental set of solutions, we examine their Wronskian:

W (x, sinx) =

∣∣∣∣∣ y1 y2

y1
′ y2

′

∣∣∣∣∣ =

∣∣∣∣∣ x sin x

1 cos x

∣∣∣∣∣ = x cos x− sinx.

Since this is non-zero at π/2, which is in the interval (0, π), it follows by Theorem 3.2.4 that y1

and y2 form a fundamental set of solutions (we need to divide by (1−x cot x) to apply Theorem
3.2.4). Thus the general solution to the given differential equation is y = c1x + c2 sinx.

3


