Math 54 Spring 2005

Solutions to Homework Section 3.2
April 8th, 2005

. Find the Wronskian of the functions € and e =3t/
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. Find W (cost,sint)(t).
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. = cos®t+sin?t = 1.
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. Find W(e™2t te2%)(¢).
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4. Find W (z,ze")(x).
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Find W (el sint, el cost)(t).
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Find W (cos? 0,1 + cos 20)(x).
cos? 1+ cos20 9, . 2.
9cosfsing  —2sin20 | = —2cos” 0sin20 + 2(1 + cos26) cosfsinf = —2cos”Osin260 +

2(2cos? 0) cos O sin ) = 2 cos? §(— sin 26 + 2 cos @ sin ) = 0.

In problems 7 through 12 determine the longest interval in which the given initial value problem
is certain to have a unique twice differentiable solution. Do not attempt to find the solution.

7.ty +3y =1t y(1)=1,9(1) = 2.

To apply theorem 3.2.1 we have to divide the ODE by ¢, obtaining 4’ + 2y = 1. Using the
notation of theorem 3.2.1 we have p(t) = 0,¢(t) = 2,g(t) = 1. ¢(t) is not defined at zero. So
the largest interval containing 1 on which p, ¢ and g are defined and continuous is (0,00), and
theorem 3.2.1 ensures the existence and uniqueness on this interval of a solution satisfying the
initial conditions.

8. (t—1)y" =3ty + 4y = sint, y(—2) = 2,¢y'(-2) = 1.
To apply theorem 3.2.1 we have to divide the ODE by t — 1, obtaining y" — %yl.‘f‘ Ty = Sot
Using the notation of theorem 3.2.1 we have p(t) = —tg_—tl,q(t) = %,g(t) = % p(t), q(t),
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and g¢(t) are not defined at 1. So the largest interval containing —2 on which p,q and g are
defined and continuous is (—o0,1), and theorem 3.2.1 ensures the existence and uniqueness on
this interval of a solution satisfying the initial conditions.

If the Wronskian W of f and g is t%e! and if f(t) =t, find g(t).

We have W=Det ( i g’((tt)) >:tg' — g. On the other side we know that W = t%¢f, so g must
satisfy tg' —g = t?e!. This implies ¢’ — g/t = te! for t # 0 and g(0) = 0 (this is seen by evaluating
the equation at ¢ = 0).

—1/xdx —Int _

Now we have to solve this ODE, for example using the integrating factor elo =e
1/t. We multiply by the integrating factor to obtain ¢'/t — g/t?> = e, which yields (g/t)" = €.
Integrating both sides with respect to ¢t we obtain g/t = e! + ¢ for any constant c. We obtain
g = t(e' + ¢) and note that it satisfies g(0) = 0, so it’s a solution for all .

Find the fundamental set of solutions specified by Theorem 3.2.5 for y" + 4y’ + 3y = 0 with
wnitial point tg = 1.

The associated characteristic equation to this differential equation is r? + 4r + 3 = 0, which
has solutions r = —1, —3. Therefore, the general solution to the differential equation is y =
cre”t 4+ cpe™3t. Since we’ll soon need it, let’s note that its derivative is Yy = —cret — 3coe 3t
For the set of solutions y; and y2 specified by Theorem 3.2.5 (with tg = 1), we first obtain y;
by letting y(1) = 1 and 3/(1) = 0 in our general solution. This gives us the system of equations

cle_1 + 626_3 =
-1 -3 _
—c1e” " — 3eqe =0
It follows that ¢; = 3/2¢ and ¢y = —e3/2, giving us the solution y; = %e_t — §€_3t. To obtain
y2, we let y(1) = 0 and 3/(1) = 1 in our general solution. This gives us the system of equations
cre 4+ ee™ = 0
—cre ™t =3ce™d = 1
It follows that ¢; = e/2 and ¢y = —e3/2, giving us y = %e‘t — §6_3t. The y; and yo we have

just found make up the fundamental set of solutions specified by Theorem 3.2.5.

Verify that y1(t) = €' and yo(t) = te! are solutions of y" — 2y +y = 0 for x € R. Do they
constitute a fundamental set of solutions?

For y; we have 31’ = y1” = e'. Substituting this into the given differential equation gives us
el —2e' +et =0.

For yo we have yo' = e!(t + 1) and yo” = e!(t + 2). Substituting this into the given differential
equation gives us
et(t+2) — 2e'(t + 1) + te! = 0.

So y1 and y2 are both solutions to the differential equation. To see that they constitute a
fundamental set of solutions, we examine their Wronskian:
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Since €% is non-zero for € R (the given interval), it follows by Theorem 3.2.4 that y; and y»

form a fundamental set of solutions. Thus the general solution to the given differential equation
a0 — o ol t
1S Yy = c1e’ + caote’.

Verify that y1(t) = x and y2(t) = sinx are solutions of (1—x cot z)y” —xy'+y = 0 for x € (0, 7).
Do they constitute a fundamental set of solutions?

For y; we have y;’ = 1 and 3;” = 0. Substituting this into the given differential equation gives
us
O—z+z=0.

For yo we have yo’ = cosz and y5” = —sinz. Substituting this into the given differential
equation gives us
(1 —xcotx)(—sinx) — zcosz + sinz = 0.

So y1 and yo are both solutions to the differential equation. To see that they constitute a
fundamental set of solutions, we examine their Wronskian:

Y1 Y2 T sinz

W(z,sinx) =

= xcosx —sinx.

y1! yo 1 cosxz
Since this is non-zero at 7/2, which is in the interval (0, ), it follows by Theorem 3.2.4 that y;
and yo form a fundamental set of solutions (we need to divide by (1 —x cot x) to apply Theorem
3.2.4). Thus the general solution to the given differential equation is y = ¢yx + co sin .



