Math 54 Spring 2005

Solutions to Homework Section 5.4
April 4th, 2005

In Exercises 1-14, for the given n x n symmetric matrix A:
(a) Find any n linearly independent eigenvectors and verify that those associated with distinct eigen-
values are orthogonal, and
(b) Find an orthogonal matrix Q and a diagonal matrix A such that Q~1AQ = A.
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[a.] The characteristic polynomial is det(A] — A) = (A — 6)(A — 1) and so the eigenvalues

are 6 and 1. Looking at 6 — A = ; 4 which is row equivalent to [ (1) (2) }, we see that a
basis for NS(6I — A) is {(2,—1)}, and so (2, —1) is an eigenvector corresponding to 6. Looking
at [ — A= [ _;1 _i , we see similarly that (1,2) is an eigenvector with eigenvalue 1. (2, —1)

and (1,2) are clearly linearly independent. Also, (2,—1)-(1,2) =2 —2=0, and so (2,—1) and
(1,2) are orthogonal.

2 1 6 0
-1 2 0 1
Q is an orthogonal matrix, A is a diagonal matrix, and Q@ 'AQ = A. This follows from various
results in previous sections.
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b.] After normalizing the vectors in (a), let Q = —= and A = . Then
NG

[a.] The characteristic polynomial is det(AI — A) = (A — 1)(A 4+ 1) and so the eigenvalues

_1 71 ] we see that a basis for NS(I —A) is {(1,1)}, and

are 1 and -1. Looking at I — A = [
-1 -1
-1 -1
(1,—1) is an eigenvector with eigenvalue -1. (1,1) and (1, —1) are clearly linearly independent.
Also, (1,1) - (1,—1) =0, and so (1,1) and (1,—1) are orthogonal.
1 1
1 -1
Q is an orthogonal matrix, A is a diagonal matrix, and Q 1AQ = A.

so (1,1) is an eigenvector corresponding to 1. Looking at —1 — A = [ ], we see that

1 0

]andA:[O 1 } Then

[b.] After normalizing the vectors in (a), let Q = % [

8 Let A=

o = O
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[a.] The characteristic polynomial is A(A?> — 2) so the eigenvalues are 0, v/2, and —+/2.
A basis for NS(—A) is {(1,0,—1)}, so this is an eigenvector corresponding to 0. A basis



13.

for NS(v2I — A) is {(1,4/2,1)}, so this is an eigenvector corresponding to /2. A basis for
NS(—v2I — A) is {(1,—v/2,1)}, so this is an eigenvector corresponding to —+/2.

We compute (1,0, —1) - (1,v/2,1) =0, (1,0,—1) - (1, —v/2,1) = 0, and (1,v/2,1) - (1,—v/2,1) =

1—241=0. All three vectors are orthogonal to each other. Therefore they are automatically

linearly independent and form an orthogonal basis.

1/vV2  1/2 1/2 0

[b.] Normalizing the bases, let Q) = 0 v2/2 —v2/2 |andA= |0

-1/vV2  1/2 1/2 0

Then @ is an orthogonal matrix, A is a diagonal matrix, and Q~1AQ = A.
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[a.] By inspection, we see that (1,—1,0,0), (1,0,—1,0), and (1,0,0,—1) are eigenvectors
with eigenvalue 0, and (1,1,1,1) is an eigenvector with eigenvalue 4. Applying the Gram-
Schmidt process (without normalizing) to these three eigenvectors with eigenvalue 0 yields the
orthogonal vectors (1,—1,0,0), (1/2,1/2,—-1,0), and (1/3,1/3,1/3,—1). We will use these vec-
tors as a basis for the eigenspace corresponding to eigenvalue 0. An easy calculation shows that
these three vectors are orthogonal to (1,1,1,1), therefore all four vectors are linearly indepen-
dent. In particular, the eigenvectors associated with distinct eigenvalues are orthogonal.

1/vV2  1/V/6  1/V/12 1/2
—1/v2  1/V/6  1/V12 1/2

[b.] Normalizing this orthogonal basis, we let @ = 0 —2/v6 1/vi2 1/2
0 0 —3/V12 1/2
00 00
and A = 8 8 8 8 Then @ is an orthogonal matrix, A is a diagonal matrix, and
00 0 4
Q1AQ = A.

In Exercises 15-20, eigenvectors and corresponding eigenvalues of a symmetric matrix A are given.

Find a diagonal matrix A and an orthogonal matrix @ such that A = QAQ~!. You do not need to

find A.
3 4 3
18. 5,1 4 |;-1, | =3 |; 5, 4
5 0 -5

21.

Calculating, (3,4,5)-(4,-3,0) =12—-12=0, (3,4,-5)-(4,—-3,0) =12 —-12 =0, and (3,4,5) -

(3,4,—5) = 9+16—25 = 0, we see that all three eigenvectors given are orthogonal to each other.
3/V2 4 3/V2 5 00

So after normalizing them, we take Q) = % 4/v/2 -3  4/V2 |,and A= |0 -1 0
5/V/2 0 —5/V2 0 00

Then @ is an orthogonal matrix, A is a diagonal matrix, and A = QAQ ™.

Show that if there is an orthogonal matrix @ that diagonalizes A, then A is symmetric.
Suppose that there is an orthogonal matrix @ that diagonalizes A. Then by definition, Q' AQ =



A for some diagonal matrix A. Multiplying by @ on the left, and by @' on the right, we have
A=QAQ'. Then AT = (QAQ ) = (Q HTATQT. Since A is diagonal, AT = A. Since Q is
orthogonal, QT:Q* and (Q~)N)T = (QT)T = Q. So AT = (Q ™ H)TATQT = QAQ™' = A. So
A = AT. Therefore A is symmetric.

22. A complex number z = a + bi is real if and only if z = Z.

at+bi=z=Z=a-bisbt+b=a—-a<bi=0&b=0<%« zis real

Jordan Normal Form

1. A= [ 411 _; ] . The characteristic polynomial is (A — 3)2. Because A # 31, the only remaining
possibility for the Jordan normal form is B = { g Zl% ] We write A as D + N where D is
. . 30 . . . 1 -1 .
the diagonal matrix { 0 3 ] and N is the nilpotent matrix [ 1 —1 } As in the notes, let
S = _i (1) } , the matrix with its first column the second column of N and its second column

[ (1) ] N =S { 8 (1) } S~1. Because ND = DN, this implies A = D + N = S(3I)S~!

0 1 . _
S[O O]S = SBS~!

35 5.34

A direct calculation shows B® = { 0 45

]A5 SBSg-1 — [8-34 —5-34}

5.3 —2.34
2. Because BN = N B, the binomial formula applies. For any nonnegative integer n,
n
(B+N)" =) < >NkB”‘k :
k=0

N2 =0 so all the terms for k > 1 are 0. We obtain
n n n n n—1 n n—1
B+ N)" = B" + NB =B"4+nNB" .
0 1

Let p(z) = apz™ + an_12" 1 + ... + a1x + ag.
p(B4+N)=a,(B+N)"+a, 1(B+N)" 1 +.. . +a(B+N)+agl
= ap(B" +nNB" Y 4 an, (B '+ (n—1)NB" ) +... +a1(B* + NB%) + aol
by the result just proved. Now rearrange terms and factor out an N as follows:

= (an,B"+an_1B" 4. . +ayB+agl)+(an,nNB" ' +a,_1(n—1)NB"2+.. 4+a1N) = p(B)+Np'(B).

3. A generalization of the binomial formula is (1 + 2)" = >3%, (})a" for real n and |z| < 1
((}) =n(n—1)...(n—k+1)/k!). Motivated by this, and using the fact that N* = 0 as we did
in problem 2, we guess that (B + N)" = B" +nN B"‘1 holds for rational numbers n. Let us
check this guess in some special cases.



[a.] If n = —1,
(B+N)(B'-NB?)=BB'+NB!'-BNB?2-NNB?=I-N?B?=1.
Therefore (B~! — NB™2) = (B + N)~1. Here we have used the fact that BN = N B implies

B7'!N = NB~!. Proof: B"'N = B"'NBB~! = B"!BNB~!'= NB~!..

[b.] If n = 1/2, we need to be more careful because it is not true in general that BY/2N =
N B2 If this holds, we have

(B1/2+%NB71/2)2: (B1/2)2_’_2%NB1/2B71/2+%N2(Bfl/2)2

1
— B+ N+ ZN?(B—l/?)2 — B+ N.

Therefore BY/2 + %NB’l/2 is a square root of B + N provided BY/2N = NBY/2

[c.] Define e to be S°72 , A¥/k!. This sum converges for any matrix A, but we won’t check
that here.

[e.e] o)

PN =N (B+ N)F /R =D (B* + kNB* 1) /k!
k=0 k=0
using our formula from 2. Now separate this into two sums:

=> (B¥)/k!'+ > kENB* /Kl =P +N2k3’f L/t
k=0 k=0 k=1

In the last step we delete the k& = 0 term because it is 0. Now use the fact that k/k! = 1/(k—1)!
for £k > 1 to obtain

o0
=P+ N B '/(k—1)! =" + NP =P (14 N).
k=1

Thus e4 = eB(1 + N).

A= [ _2 _? ] . The characteristic polynomial of A is (A — 1)2. Therefore we can write A as

D + N where D is the diagonal matrix [ é (1) } and N is the nilpotent matrix [ _g _; ]
The notes show that N? = 0 in this situation. D and N commute (DN = N D) because D = I.
Also, D is invertible, so we can apply problem 3.

-1 -2
-1 _ p-1_ -2 _ 7 _ N —
A7 =D ND I-N [ 9 3}

VA is not unique because v/D is not unique. There are actually infinitely many square roots of
v/ D. The square roots of D are the matrices similar to one of the following:

10 -1 0 4 1 0
o 1] 0o -1 o —1]"
If D = I, we obtain one possibility for the square root of A.

1 1 2 1
2 _pi2y typ-e oy o
AV =D 4 OND I+ 5N [_1 o]'
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2 -1
1 0

Another possibility for VA is [ B
and does not give a square root of A.

] . The matrix [ 1

0 —1 ] does not commute with N

We can use problem 2 to compute the 5th power of the matrix in problem 1:
4—15_3o5+53041—1
1 2 |0 3 0 3 1 -1

[3 0 N 5.3 —5.3*]1 [8.3% —5.3¢
“ | o 3° 5.3 —5.3* | " | 5.3t —2.3% |~

This agrees with our computation in problem 1.



