
Theorem Let A be a set and let τ1, τ2, . . . τn be transpositions in SA such
that the product τ1τ2 · · · τn is the identity. Then n is even.

Proof: By induction on n. If n is zero, this is trivial For the induction step,
we assume that the theorem is true for all n′ < n and that the above product
is zero.

We shall repeatedly use the following trick:
Trick: If α and β are transpositions, then αβ = βα′, where α′ is another

transposition.
Claim 1. If τ1 . . . τn = e, then there is a sequence of transpositions τ ′1, . . . τ

′
n

such that τ ′1 · · · τ ′n = e and such that for some i < j, τ ′i = τ ′j .
Claim 2. If τ1, . . . τn = e and there exist i < j such that τi = τj , then there

is a sequence of transposition τ ′1, . . . τ
′
n−2 whose product is zero.

If we can prove both these claims, then the theorem follows, because the
induction assumption applied to the new sequence in claim 2 tells us that n− 2
is even, hence n is even.

Proof of claim 1. Choose an element a such that τ1 moves a. Let S be the
set of integers i such that τi does not move a and τi+1 does move a. Suppose
first that S is empty. Then we have

e = (ax1)(ax2) · · · (axm)τm+1 · · · τn,

where τi does not move a if i > m. Since this product σ is the identity, σ(a) = a,
and we see from the above formula that xm must equal some xi for i < m. This
proves the claim in this case. If S is not empty, it has a smallest element,
call it j. Then by the trick, we τjτj+1 = τj+1τ

′ for some transposition τ ′, so
have e = τ1, · · · τj−1τj+1τ

′τj+2 · · ·. Note that all the transpositions up to and
including τj+1, which now in the jth place, move a. The minimum set of the
set S for this list has to be at least j + 1. Repeating this process, eventually S
will become empty, and claim 1 will be proved.
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