No. 32. Let G be a group, let H be a subgroup, and let a and b be elements
of G such that e = bH. Then it follows that HA™' = Hb~!. Indeed, if
aH = bH, then a and b lie in the same left coset, so b = ah for some h
€ H. Hence b™! = (ah)™' = h~'a™!. Since H is a subgroup, h™! € H, so
Hb~! = Ha™!.

No. 39. Let H be a subgroup of index 2 in G. Then H is normal. Indeed,
the set of left cosets is a partition of G, containing exactly two elements, each
a subset of G.. One of these subsets is H and hence the other must be G'\ H,
the complement of H. The same applies to the set of right cosets. Thus the
left and right cosets are the same.

No. 40. Let G be a group of order n and let g be an element of G. Then
g" = e. Indeed, by the theorem of Lagrange, the order of the cyclic subgroup
< g > generated by g, call it m, divides n. But m is also the smallest positive
integer such that ¢ = e. If n = md, it follows that ¢" = g™ = e.

No. 35. Let G be a group and H a subgroup. The problem is to show that
the number of left cosets of H is the same as the number of right cosets. Let
G/H denote the set of left cosets of G and let H\G denote the set of right
cosets of G. We will construct a bijective mapping ¢ from G/H to H\G.
Namely, if C' is a left coset, then we claim that C~! := {¢™' : c € C} is a
right coset. Indeed, if g € C, then C' = {gh : h € H}, so C~' = {(gh)™! =
hlg7':he H} = {hg™' : h € H} = Hg~'. The same argument shows
that if C' is a right coset, then C~! is a left coset, so we also get a map
: H\G — G/H. Evidently ¢ o1 = id and ¢ o ¢ = id, so both maps are
bijective.

No. 46. Let G be a cylic group of order n. For each element g of G, let
ord g denote the order of g, that is the smallest positive number m such that
g™ = e, or, equivalently, the number of elements in the cyclic subgroup (g)
generated by g. Let G4 be the subset of G consisting of those elements of
order d. This is empty if d does not divide n, and is not empty otherwise.
Thus the set of all G4 such that d|n forms a partition of G into disjoint
sets. Consequently, the number of elements in G is the sum of the numbers
of elements in each Gg: |G| = 34, |Ga|. Now for each divisor d of n, by
exercise 45, there is a unique subgroup H, of order d, and furthermore Hy is
cyclic and is the set of all elements such that g¢ = e. Thus G4 C Hy, and in
fact an element of H; belongs to Gy if and only if it generates Hy. Since Hy
is cyclic of order d, it is isomorphic to Z4, and has exactly ¢(d) generators.



Thus |G4| = ¢(d). Returning to our formula, we find that

n=1G|=>_|Gal =2 ¢(d).

dn dn

No. 47. In fact we can easily prove a stronger form of the result, which is
very useful.

Theorem Let G be a finite group of order n. Then the following condi-
tions are equivlaent.

1. For every natural number m dividing n, the number of elements ¢ of
G such that g™ = e is less than or equal to m.

2. For every natural number m dividing n, G has at most one (cyclic)
subgroup of order m.

3. For every natural number m dividing n, G has at most most ¢(m)
elements of exact order m.

4. G is cyclic.

Proof: (1) implies (2). If H is a subgroup of order m, then every element h
of H satisfies h" = e, and of course H has m elements. If there were two
such groups, there would consequenctly be more than m elements of G such
that ¢ = e.

(2) implies (3). If g has exact order m, it generates a cyclic subgroup
H of order m, and this H has exactly ¢(m) generators. Hence if there were
more than ¢(m) such elements, not all could generat H, and hence we would
find another (cyclic) subgroup of order m.

(3) implies (4). Let ¢»(m) denote the number of elements of G which have
exact order m. Since every element of G has some order dividing n, we get
that n = 32,,, ¥(m). On the other hand, we know that n = 3=,,,, #(m). By
assumption, 0 < ¥(m) < ¢(m) for all m. These equations together imply
that ¢(m) = ¢(m) for all m. In particular, ¥(n) = ¢(n) # 0. This implies
that G contains an element of exact order n, hence is cyclic.

(4) implies (1). We did this a while ago.



