Solution to \#11, section 2.6
This is mostly a matter of keeping track of the definitions. I think it is clearer to use a slightly different notation. Let V and W be vector spaces over F and let $T: V \rightarrow W$ be a linear transformation, and let $T^{*}: W^{*} \rightarrow V^{*}$ be its dual (transpose), defined by $T^{*}(g):=g \circ T$. We also have maps $\psi_{V}: V \rightarrow V^{* *}$ and $\psi_{W}: W \rightarrow W^{* *}$, where for example $\psi_{V}(v)(f):=f(v)$. The claim is that the following diagram commutes

We must prove that if v is any element of V , then $\psi_{W}(T(v))=T^{* *}\left(\psi_{V}(v)\right)$. Both sides are functionals on W^{*}, and to prove that they are equal, it is enough to prove that they have the same value when evaluated at any element g of W^{*}. Let us start with the left side. At each stage, we just use the definition.

$$
\psi_{W}(T(v))(g)=g(T(v))
$$

Now the right side:

$$
\begin{aligned}
T^{* *}\left(\psi_{V}(v)\right)(g) & =\left(\psi_{V}(v) \circ T^{*}\right)(g) \\
& =\psi_{V}(v)\left(T^{*}(g)\right) \\
& =\psi_{V}(v)(g \circ T) \\
& =g \circ T)(v) \\
& =g(T(v))
\end{aligned}
$$

This is the same answer we got above, and concludes the proof.
Solution to number 19:
We do this in the finite dimensional case only. We know that there exists a basis $\left(v_{1}, \cdots v_{n}\right)$ for V and a $k \leq n$ such that $\left(v_{1}, \cdots, v_{k}\right)$ is a basis for W. Since W is a proper subspace of $V, k<n$. Let $\left(f_{1}, \cdots f_{n}\right)$ be the dual basis to $\left(v_{1}, \cdots v_{n}\right)$. Then $f_{n}\left(v_{i}\right)=0$ for all $i \leq k$, and in particular for all the vectors in a basis for W. Hence $f_{n}(w)=0$ for all $w \in W$. But $f_{n}\left(v_{n}\right)=1$. Thus f_{n} does the job.

Solution to number 20:
Let $T: V \rightarrow W$ be a linear transformation.
(a). Suppose T is surjective. To prove that T^{*} is injective, it suffices to prove that its null space is zero. Suppose $T^{*}(g)=0$. Then $g \circ T=0$. This means that $g(T(v))=0$ for every $v \in V$. Since T is surjective, it follows that $g(w)=0$ for every $w \in W$. This means that $g=0$. thus, the null space of T^{*} is zero. Conversely, suppose that T is not surjective. Then its image (range) is a linear subspace W^{\prime} of W. By the previous problem, there exists a $g \in W$ such that $g\left(w^{\prime}\right)=0$ for all $w^{\prime} \in W$, but $g \neq 0$. Then $g(T(v))=0$ for all $v \in V$, i.e., $T^{*}(g):=g \circ T=0$. But then T^{*} is not injective.
(b). Suppose T^{*} is surjective. For each nonzero $v \in V$, we prove that $T(v) \neq 0$. Since v is not zero, there exists an element $f \in V^{*}$ such that $f(v) \neq 0$. (This follows from the previous problem.) Since T^{*} is surjective, there exists some $g \in W^{*}$ such that $f=T^{*}(g):=g \circ T$. Since $f(v)=g(T(v))$ is not zero and g is linear, $T(v) \neq 0$. This shows that the null space of T is zero, so T is injective. Conversely, suppose that T is injective. Then it is an isomorphism onto its image, which is a linear subspace of W, and we may as well suppose that it is equal to this subspace. Then the problem amounts to showing that any linear functional on the subspace V of W extends to a linear functional on W. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis for W such that $\left(v_{1}, \ldots, v_{k}\right)$ for a basis for V. Then any linear functional g on W is a linear combination of the restrictions of $\left(f_{1}, \ldots f_{k}\right)$ to W, and each of these extend, so so does g.

