1.5.5

Suppose the set is linearly dependent. Then $\exists a_0, a_1, ..., a_n \in F$, not all zero, such that $a_0 + a_1x + ... + a_nx^n = 0 \forall x \in F$. However, this would mean that there is a polynomial other than the zero polynomial that has infinitely many roots. This cannot be, since the maximum number of roots a polynomial of degree *n* can have is *n*. Thus $a_0 + a_1x + ... + a_nx^n$ will be 0 if and only if $a_{0-1} = a_{1-1} = a_n = 0$. Hence our set is linearly independent.

1.6.12

Since there are three vectors in the basis for V, dim V = 3. By **Corollary 2b**, any linearly independent subset of V that contains exactly dim V = *n* elements is a basis for V. Thus, if the set $\{u+v+w,v+w,w\}$ is linearly independent, it is a basis for V, since it contains 3 elements.

We know that, since {*u*, *v*, *w*} form a basis for V, they are linearly independent, and so $a_1u + a_2v + a_3w = 0$ iff $a_{1=}a_{2=}a_{3=}0$. Check when $c_1(u+v+w) + c_2(v+w) + c_3w = c_1u + (c_1 + c_2)v + (c_1+c_2+c_3)w = 0$. From the independence of {*u*, *v*, *w*}, we know that

$$c_1 = 0$$

 $c_1 + c_2 = 0$
 $c_1 + c_2 + c_3 = 0$

Substituting $c_1=0$ into $c_1 + c_2=0$ we get $c_2=0$, and substituting $c_1 + c_2=0$ into $c_1+c_2+c_3=0$ we get $c_3=0$. So $c_1=c_2=c_3=0$, implying that $\{u+v+w, v+w, w\}$ is linearly independent. Thus it is a basis for V.

1.6.23

a) dim W₁ = dim W₂ iff $v = a_1 v_{1+} a_2 v_2 + ... + a_n v_n$ for some a_i in the field F:

(⇒) Suppose dim W₁ = dim W₂ = k. WOLOG, let { $v_1, ..., v_k$ } then be the largest linearly independent subset of { $v_1, ..., v_n$ }. Now suppose there are no such a_i such that $v = a_1 v_{1+} a_2 v_2 + ... + a_n v_n$. Then there are also no a_i such that $v = a_1 v_{1+} a_2 v_2 + ... + a_k v_k$. So { $v_1, ..., v_k, v$ } is the largest linearly independent subset of { $v_1, ..., v_n, v$ }, which spans W₂. So it is also a basis for W₂, and so dim W₂ = k+1 ≠ k = dim W₁. This is a contradiction, so $v = a_1 v_{1+} a_2 v_2 + ... + a_n v_n$ for some a_i in the field F.

(\Leftarrow) Suppose $v = a_1 v_{1+} a_2 v_2 + ... + a_n v_n$ for some a_i in the field F. Then v is in span $\{v_1, ..., v_n\}$, and so $W_2 = \text{span } \{v_1, ..., v_n, v\} = \text{span } \{v_1, ..., v_n\} = W_1$. Hence dim $W_1 = \dim W_2$.

b) In the case that dim $W_1 \neq \dim W_2$, we must have dim $W_1 + 1 = \dim W_2$. dim $W_1 \neq \dim W_2$ implies there is no such a_i such that $v = a_1 v_{1+} a_2 v_2 + ... + a_n v_n$. Thus, if dim $W_1 = k$, dim $W_2 = k + 1$ (see a).