2.1.22

Proof for $\mathbf{F}^{n} \rightarrow \mathbf{F}^{m}$: (we can extend this to all other cases in the problem easily)

Since \mathbf{F}^n is a vector space of dimension n, define the elementary basis on it, $\{e_1, \dots, e_n\}$. Then any vector (a_1, \dots, a_n) can be expressed as a linear combination of our basis, namely $a_1e_1 + \dots + a_ne_n$, where $a_i \in \mathbf{F}$. Then

 $T(a_1, ..., a_n) = a_1 T(e_1) + ... + a_n T(e_n),$

since T is linear. $T(e_i)$ are vectors in \mathbf{F}^m , so we have that \exists vectors in \mathbf{F}^m such that the above holds for any vector (a_1, \ldots, a_n) . To extend this to the case $\mathbf{R}^3 \rightarrow \mathbf{R}$, we simply note that \mathbf{R} a case in which m=1, so the vectors in it are simply reals. In the case $\mathbf{F}^n \rightarrow \mathbf{F}$, we have m=1, and the vectors in \mathbf{F} are just elements of the field.

2.1.28

{0} is T-invariant:

Since T is linear, T(0) = 0, so $\{0\}$ is mapped to itself and is thus T-invariant.

V is T-invariant:

Since T: V \rightarrow V, T(v) \in V \forall v \in V. Thus V is T-invariant.

<u>R(T) is T-invariant:</u>

Note that $R(T)\subseteq V$, and note that $T(v)\in R(T) \forall v\in V$. Thus, in particular, $T(v)\in R(T) \forall v\in R(T)$. So $T(R(T))\subset R(T)$, and so R(T) is T-invariant.

N(T) is T-invariant:

By definition, $T(v) = 0 \quad \forall v \in N(T)$. Since T is linear, $T(0) = 0 \in N(T)$, so $T(v) \subseteq N(T) \quad \forall v \in N(T)$. Thus N(T) is T-invariant.